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1. INTRODUCTION 

The q-exponential is a biparametric distribution derived from the maximization of the Tsallis entropy 

under defined constraints [1]. Tsallis distribution has been observed as a good alternative to describe systems 

in which nonequilibrium is dominant [2,3]. For example, Barbosa et al. [4] has proposed the application of 

Tsallis distribution to describe the Sun-Earth system during geomagnetic storms. Several other applications 

can be found in fields such as geology, anatomy, and economics. 

The specific case of the q-exponential distribution has several other applications in the field of reliability 

engineering. Sales Filho et al. [5] have successfully applied the q-exponential to compute Reliability R = P(Y 

< X) in a mechanical problem of stress–strength, where stress Y and strength X are independent q-exponential 

random variables. Since fatigue life data can involve extremely large values, other distributions such as 

Weibull may not be ideal to model phenomena in the tail of the distribution. As well as obtained by Sales Filho 

et al. [5], q-Exponential distribution provided better results when fitting the data analyzed by Lins et al. [6] 

when comparing a q-Exponential based generalized renewal process (GRP) with a q-Weibull-GRP.  

Indeed, the q-exponential distribution is very useful in the field of reliability since it can represent all 

three phases of the bathtub-shaped hazard rate function: improvement when 1 < q < 2, useful life when q > 1, 

and wear-out when q < 1 [7]. As observed by Sales Filho et al. [5], it can model the power-law behavior with 

a heavy-tailed probability density function (PDF), which can be illustrated by the realization of rare events – 

failure of equipment working for a long time with low hazard rates. However, Sales Filho et al. [5] have 

observed that for the wear-out phase (q<1) the estimation of the q-exponential parameters presented 

convergence problems when applying the traditional Maximum Likelihood method due to the “monotone 

likelihood” problem, which occurs when the log-likelihood obtain its maximum for infinite parameter values 

[8]. De Negreiros et al. [7] have tackled such a problem by evaluating corrections to the original q-exponential 

distribution with Firth’s method and optimization using the Nelder-Mead method, which led to satisfactory 

results in terms of parameters estimation. 

To avoid the handling of the “monotone” likelihood problem, the proposition of the current work is to 

use an alternative method to estimate q-Exponential parameters, by using the Kullback-Liebler divergence. It 

can be understood as a relative entropy between two probability distributions [9]. Since the evaluation of KL 

divergence for PDF may present numerical convergence issues and in reliability in general the main goal is to 

analyze the survival function of a given equipment, the Kullback-Liebler divergence of Survival functions 

“KLS” is herein considered. As applied by Liu [10], it will be measured the divergence between the modeling 

of a set of sample data with q-exponential and an empirical survival function. By including a new mathematical 

term so that KLS remains positive during the calculations, the KLS function can be minimized to obtain 

estimations for the q-exponential two parameters q (shape) and η (scale). 

2. APPROACH FOR APPLICATION OF KLS TO ESTIMATE q-EXPONENTIAL 

DISTRIBUTION PARAMETERS  

2.1 q-Exponential Distribution 

The q-exponential function expq(t) is defined as [5]: 
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exp𝑞(𝑡) =  {
[1 + (1 − 𝑞)𝑡]1 (1−𝑞)⁄ , if [1 + (1 − 𝑞)𝑡] ≥ 0

0, otherwise
 (1) 

where,  

q = shape parameter (also known as entropic index). 

The cumulative distribution function (CDF) Fq(t) for the q-Exponential distribution is defined by the 

following expression, and presents different supports for t depending on the parameter q. For the limit q→1 

the q-Exponential reaches the traditional Exponential distribution [5]. 

 

F𝑞(𝑡) =  {
1 − [exp𝑞 (

−𝑡(2−𝑞)

𝜂
)], if 𝑡 ≥ 0

0, otherwise
                   𝑡 ∈  {

[0; ∞), if 1 ≥ 𝑞 > 2

[0;
𝜂

(1−𝑞)
), if 𝑞 < 1  (2) 

Where,  

η = scale parameter. 

Hence, the survival function reliability Rq(t) is structured as follows (Eq. 3). It will be further considered 

in the application of the Kullback-Liebler Divergence of survival functions: 

 

R𝑞(𝑡) =  {
exp𝑞 (

−𝑡(2 − 𝑞)

𝜂
) , if 𝑡 ≥ 0

0, otherwise

 (3) 

2.2 Kullback-Liebler Divergence of Survival Functions 

Kullback-Liebler divergence can be understood as a relative entropy between two probability 

distributions [9]. In mathematical terms, given two PDF f and g for the same random variable X, the Kullback-

Liebler divergence of f in relation to g is defined by: 

 

𝐷(𝑓||𝑔) =  ∫ 𝑓(𝑥)ln 
𝑓(𝑥)

𝑔(𝑥)
𝑑𝑥

 

ℝ

 

 

(4) 

Since the evaluation of Kullback-Liebler divergence for PDF may present numerical convergence 

problems, the Kullback-Liebler divergence of Survival functions “KLS” is herein considered. For such an 

approach, the survival functions F and G are used instead of PDFs f and g. Here, the non-parametric empirical 

survival function, Gn(x), of a random sample of size n is defined as below: 

 

Gn(𝑥) = ∑ (1 −
𝑖

𝑛
) 𝐼[𝑋(𝑖),𝑋(𝑖+1)]

𝑛−1
𝑖=0 (𝑥), 

 
(5) 

where I is the indicator function and (0 = X(0) ≤) X(1) ≤ X(2) ≤...≤ X(n)) are the ordered samples. 

Similar as Yari et al. [9] has performed when applying Kullback-Liebler divergence for estimation of 

the Weibull parameters, after defining the empirical survival function, an adjustment to the Kullback-Liebler 

divergence is performed so that the function value remains positive during the parameter estimation process. 

Hence, the adjusted Kullback-Leibler divergence (KLS) of survival functions Gn(x) and F(x) is: 

 

𝐾𝐿𝑆(𝐺𝑛||𝐹) =  ∫ (𝐺𝑛(𝑥) ln
𝐺𝑛(𝑥)

𝐹(𝑥)
− 𝐺𝑛(𝑥) + 𝐹(𝑥)) 𝑑𝑥

∞ 

0

 

 

(6) 

From Eq. 6, the terms where F(x) is present are functions of q-Exponential parameters q (shape) and η 

(scale), which is the basis for the parameter estimation by minimizing the KLS. 
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3. RESULTS AND DISCUSSION 

3.1 Validation Data 

For validation of the application of Kullback-Liebler divergence for parameter estimation, it is herein 

considered data from a MRI scanner, same used by De Negreiros [7]. Table 1 presents the data used as the 

basis for validation of current methodology to estimate q-exponential distribution parameters. 
Table 1 - Time between failures of a MRI scanner (days) [7] 

# TBF # TBF # TBF # TBF # TBF 

1 99 16 77 31 19 46 26 61 47 

2 38 17 24 32 47 47 135 62 26 

3 109 18 66 33 14 48 44 63 87 

4 10 19 25 34 53 49 59 64 6 

5 35 20 4 35 14 50 11 65 13 

6 42 21 8 36 35 51 18   

7 31 22 26 37 73 52 3   

8 18 23 98 38 18 53 46   

9 53 24 11 39 38 54 17   

10 3 25 87 40 140 55 7   

11 12 26 11 41 19 56 75   

12 13 27 54 42 10 57 58   

13 40 28 22 43 17 58 102   

14 6 29 13 44 4 59 6   

15 78 30 54 45 54 60 53   

3.2 Parameter Estimation Results for MRI Scanner Data 

The parameter estimation for the q-Exponential is obtained by minimizing the KLS function. In the 

current work, the optimization method used for KLS minimization and parameter estimation was the 

differential evolution method [11], which can be used to optimize multidimensional functions without using 

gradients. The Differential Evolution method optimizes the function by a given set of candidate solutions and 

creating new candidate solutions by combining existing ones. The solution is the one that presents the best 

fitness on the optimization problem [11]. 
By using the Differential Evolution optimization method for minimizing the KLS function of q and η, 

the results presented in Table 2 were obtained. The ranges applied for the solution are the following: 

● 0 < q < 3/2 
● 10 < η < 3000 days 

It can be seen that the values obtained for q and η are very similar from the ones obtained by De 

Negreiros using the Maximum Likelihood method. For validation purposes, the KLS function value was 

evaluated for the two solutions found for the different methods and it is concluded that the KLS is indeed 

smaller when evaluated for the parameters herein obtained q=0.69 and η=64.68 days. 

Table 2 – Parameter estimation based on ML with Firth penalization method and based on 

minimization of Kullback-Liebler divergence for MRI scanner failure data 

Method 𝑞̂ 𝜂̂ (days) KLS function value 

ML+Firth [7] 0.71 60.48 0.2370 

Kullback-Leibler 0.69 64.68 0.1868 

4. CONCLUSIONS 
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The proposition of the current work is to use an alternative method to estimate q-Exponential parameters, 

by using the Kullback-Liebler divergence of survival functions. The optimization was performed using the 

Differential Evolution method, which optimizes the function by a given set of candidate solutions and creating 

new candidate solutions by combining existing ones. The solution is the one that presents the best fitness on 

the optimization problem. For the MRI Scanner failure data, the optimization of KLS function has provided a 

very similar solution as presented by De Negreiros et al. [7]. The advantage of the proposed method is that 

there is no need to handle the typical “monotone” likelihood problem often present when estimating parameters 

of probability distributions. 
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