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ABSTRACT 
 

In the Bayesian framework, the prior knowledge about a reliability measure can be updated as new information 
is obtained. Theoretically, the possibly more spread initial state of knowledge about the system reliability may 
gradually reduce as new field and/or test data may narrow the prior estimate’s uncertainty. However, these 
data are rather scarce and expensive to obtain, especially for technologies under development in industries 
such as O&G. In this context, the intrinsically limited prior knowledge on the system reliability is only 
available in terms of generic databases and expert opinions. In those cases, the prior distribution has a major 
strength in the reliability estimate obtained at the end of the development of new technology. Bayesian 
reliability analysis strongly relies on estimating appropriate informative prior distributions. Thus, we propose 
an approach that does not require direct elicitation of parameters to define informative prior distributions using 
expert’s opinions and/or generic data at the system level of new equipment. Specifically, the method of 
moments and maximum-entropy are adopted to aggregate information at the system level from generic sources 
and expert opinions for the estimation of the prior probability distributions of the reliability parameters. Finally, 
we present a case study of specific completion equipment to be installed in a Brazilian oil field considering an 
O&G generic database and expert opinion. 

1. INTRODUCTION 
 

Oil & Gas (O&G) wells operation usually involves extremely complex equipment, in which reliability 
estimation is paramount to ensure sustained production and reduce maintenance costs. However, reliability 
data is frequently absent, scarce, or insufficient because tests experiments are usually very costly. In this 
context, Bayesian inference allows aggregating and updating prior knowledge as new information is acquired 
[1]. 
 
Thus, prior distributions are a key component for Bayesian analysis. Non-informative prior affects the 
likelihood information as low as possible. However, when limited data is available, the likelihood constructed 
is sometimes weak and, using non-informative prior may end in a biased posterior distribution with high 
uncertainty. Therefore, it is essential to incorporate as much information as possible to build the prior 
distribution in order to improve the reliability estimation accuracy [2]. 
 
To define the prior distribution for the reliability of equipment under development, we propose a methodology 
that does not require direct elicitation of probability distribution parameters but rather uses expert opinion 
and/or generic data for the Fault Tree (FT)’s top event (the system level). Thus, the proposed methodology 
allows keeping elicitation simple and intuitive. To that end, we adopted two approaches, one of them is based 
on the method-of-moments (MM) [3] and the other relies on the maximum-entropy (ME) method [4].  
 
The remainder of this paper unfolds as follows. Section 2 presents the proposed methodology, describing the 
elicitation methods and MM and ME approaches suitable for distinct types of events. Section 3 presents an 
O&G case study applied to a novel completion expansion packer introduced in well completion. Finally, 
Section 4 provides concluding remarks. 
 
2. DESCRIPTION 
 

Our proposed methodology is illustrated in Figure 1, in which the challenge is to propagate 
‘downward’ from a top event (𝐸𝐸𝑇𝑇) the information gathered from generic database throughout the failure 
modes (𝐸𝐸𝐹𝐹𝑀𝑀1  and 𝐸𝐸𝐹𝐹𝑀𝑀2) until the basic events (𝐸𝐸𝐴𝐴, 𝐸𝐸𝐵𝐵, 𝐸𝐸𝐶𝐶 , 𝐸𝐸𝐷𝐷 and 𝐸𝐸𝐸𝐸) of the novel technology. To that end, 
we consider expert opinions and two distinct approaches to define the prior distribution for each basic event. 
Finally, these distributions are used in a Monte Carlo simulation algorithm to propagate ‘upward’ the 



 

uncertainty from the basic events and obtain an uncertainty distribution of the system’s reliability. Then, the 
results may be compared to the desired target reliability measure to assess the risk associated with the 
equipment’s application. 
 
Since in FT the events are related to different consequences and probabilities, the event 𝑖𝑖 contributes with a 
weight 𝑤𝑤𝑖𝑖 to the immediate upper event. These weights allow us to build relations between the top and basic 
events used to estimate the equipment reliability. In this work, only the weights for each event are elicited, 
avoiding the direct estimation of parameters. In addition, as distinct experts may have different knowledge 
about the new equipment, one may assign specific relevance factors for each expert (i.e., the 𝑗𝑗-th specialist 
may receive a relevance factor, 𝑟𝑟𝑗𝑗, validated by other reliable sources such as senior experts or a consensus). 
Then, the quantitative responses of experts with 𝑟𝑟𝑗𝑗 = 𝑥𝑥, ∀𝑥𝑥 ∈ ℤ+∗ , are considered 𝑥𝑥 times in order to compute 
a weighted median value.  
 

 
Fig 1 - Overview of the proposed methodology and how the contributions of the basic events 

are computed. 

 
The elicited contributions define the relations between the system level and the other events. For example, in 
Figure 1, given 𝑝̂𝑝 (i.e., the estimate of the failure probability related to 𝐸𝐸𝑇𝑇), one defines the probability of the 
failure mode 𝐸𝐸𝐹𝐹𝑀𝑀1  as 𝑝𝑝𝐹𝐹𝑀𝑀1 = 𝑝̂𝑝 × 𝑤𝑤𝐹𝐹𝑀𝑀1  (I), where 𝑤𝑤𝐹𝐹𝑀𝑀1  represents the contribution of 𝐸𝐸𝐹𝐹𝑀𝑀1  to 𝑝̂𝑝 . 
Analogously, the failure probability of basic event 𝐸𝐸𝐴𝐴 can be defined as 𝑝𝑝𝐴𝐴 = 𝑝𝑝𝐹𝐹𝑀𝑀1 × 𝑤𝑤𝐴𝐴  (II), where 𝑤𝑤𝐴𝐴 is the 
weight of 𝐸𝐸𝐴𝐴 to 𝑝𝑝𝐹𝐹𝑀𝑀1. Then, combining (I) and (II), 𝑝𝑝𝐴𝐴 = 𝑝̂𝑝 × 𝑤𝑤𝐹𝐹𝑀𝑀1 × 𝑤𝑤𝐴𝐴, and setting 𝑤𝑤𝐴𝐴′ = 𝑤𝑤𝐹𝐹𝑀𝑀1 × 𝑤𝑤𝐴𝐴 as the 
weight of 𝐸𝐸𝐴𝐴 to 𝑝̂𝑝, we get 𝑝𝑝𝐴𝐴 = 𝑝̂𝑝 × 𝑤𝑤𝐴𝐴′ . 
 
The system’s reliability can be represented by a multilevel reliability model (MRM). Here, the MRM model 
uses the logic gates of the FT, in which each basic event 𝑖𝑖 (𝐸𝐸𝑖𝑖) has a set of parameters 𝜃𝜃𝑖𝑖  that model the 
probability of occurrence of the corresponding mechanism/cause of failure. Then, the reliability function of 
the entire system is a function of 𝜃𝜃𝑖𝑖, which translate the possible pathways leading to equipment failure for 
example over a mission of 𝑇𝑇 years [5]. 
 
We adopt distinct approaches depending on the characteristics of the basic event: Approach 1 is adopted if 
success/fail event are considered, and Approach 2 is adopted if continuous distributions describe the basic 
events. In Approach 1, the occurrence of an event 𝐸𝐸𝑖𝑖 is assumed to be well described by a Bernoulli distribution 
with parameter 𝑝𝑝𝑖𝑖. We assumed there is uncertainty in 𝑝𝑝𝑖𝑖, modeled by 𝜋𝜋(𝑝𝑝𝑖𝑖) as a beta distribution 𝐵𝐵(𝛼𝛼𝑝𝑝𝑖𝑖 ,𝛽𝛽𝑝𝑝𝑖𝑖), 
∀𝑖𝑖. In this approach, in order to obtain, the mean, 𝜇𝜇𝑝𝑝𝑖𝑖, and variance, 𝜎𝜎𝑝𝑝𝑖𝑖

2, the PERT distribution is adopted, 
where 𝑎𝑎𝑝𝑝𝑖𝑖 is the optimistic estimate, 𝑚𝑚𝑝𝑝𝑖𝑖 is the most likely estimate, and 𝑏𝑏𝑝𝑝𝑖𝑖 is the pessimistic estimate of 𝑝𝑝𝑖𝑖 
[6]. Thus, from the three estimates, the expected value and variance of 𝑝𝑝𝑖𝑖 is calculated (Equations 1 and 2, 
respectively). These values allow us to analytically estimate the prior distribution through MM. The estimate 
𝑝̂𝑝 is the most likely value and we assume that percentile 1, 𝑃𝑃1, and percentile 99, 𝑃𝑃99, are the optimistic and 
pessimistic values, respectively. As mentioned, basic event 𝐸𝐸𝑖𝑖 contributes with a weight 𝑤𝑤𝑖𝑖 to upper event. 



 

Thus, the relations 𝑚𝑚𝑝𝑝𝑖𝑖 = 𝑝𝑝 ̂ × 𝑤𝑤𝑖𝑖′,  𝑎𝑎𝑝𝑝𝑖𝑖 = 𝑃𝑃1 × 𝑤𝑤𝑖𝑖′ , and 𝑏𝑏𝑝𝑝𝑖𝑖 = 𝑃𝑃99 × 𝑤𝑤𝑖𝑖′  were used to compute 𝜇𝜇𝑝𝑝𝑖𝑖  and 𝜎𝜎𝑝𝑝𝑖𝑖 , 
where 𝑤𝑤𝑖𝑖′   is the contribution of event 𝑖𝑖 to the top event. 
 

𝜇𝜇𝑝𝑝𝑖𝑖 =
𝑎𝑎𝑝𝑝𝑖𝑖 + 4𝑚𝑚𝑝𝑝𝑖𝑖
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In Approach 2, the occurrence of event 𝐸𝐸𝑖𝑖 is described by a continuous distribution, and ME method is adopted. 
ME method involves maximizing the entropy measure 𝐻𝐻 (Equation 3), where 𝜋𝜋(𝜃𝜃𝑖𝑖) is the probability density 
function (PDF) for the parameters of event 𝑖𝑖 and Θi is the parameter space of 𝜃𝜃𝑖𝑖.  

maximize 𝐻𝐻 = � −𝜋𝜋(𝜃𝜃𝑖𝑖) × log[𝜋𝜋(𝜃𝜃𝑖𝑖)]𝑑𝑑𝜃𝜃𝑖𝑖
Θi
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As constraints we consider that the expected value as well as the percentiles 5 and 95 of each event 𝑖𝑖 must be 
equal to the expected value, percentiles 5 and 95 of the reliability 𝑅𝑅𝑇𝑇  of the top event 𝐸𝐸𝑇𝑇  weighted 
(exponentially) by its specific contribution 𝑤𝑤𝑖𝑖′. Thus, we use a Particle Swarm Optimization (PSO) algorithm 
to obtain the solution of the maximization problem.  
 
3. DISCUSSION 
 
The proposed methodology is applied to a case study of a novel expansible production packer, which is a 
common completion equipment of the O&G industry. The FT related to the equipment failure during its 
installation, contains twelve basic events. The MRM is obtained by the multiplication of the reliability models 
of the basic events since all logic gates of the FT are of the “OR” type. In this case study, the only initially 
available information is for the system level accessible in generic database by Wellmaster report: the number 
of production packers installed and the number of failures during its installation are 5,730 and 16 respectively. 
 
The FT diagram related to the equipment failure during its operation contains seven basic events. The MRM 
model was defined by multiplying different reliability models: exponential model, with parameter 𝜆𝜆𝑖𝑖, Weibull 
model, with parameters 𝛼𝛼𝑖𝑖  and 𝛽𝛽𝑖𝑖 , and Arrhenius-Weibull model with parameters 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , and 𝛽𝛽𝑖𝑖 . As in the 
installation case, the only available information is the data presented by the Wellmaster. The report provides 
the scale (𝛼𝛼) and shape (𝛽𝛽) parameters of the Weibull for the time to failure related to the failure modes annulus 
communication, 63,521.0 and 0.605, and column-annulus communication, 860.2 and 1.372, during the 
operation. summarizes this information.  
 
After eliciting and computing the contributions of the basic events we determined the prior distributions for 
each basic event. Then, we used a Monte Carlo simulation algorithm to perform ‘upward’ propagation, i.e., to 
propagate the uncertainty through the FT until the top event, determining the probability of failure in 
installation and during operation (considering a mission time of 27 years) for the novel O&G packer. Thus, for 
the real case study, equipment reliability during its installation, 𝑅𝑅(0), is represented in Fig 2a and the reliability 
estimation, R(27), is shown in Fig 2b. For the installation the results meet the metric recommended by API 
17N [7] as the failure probability tends to 0. For the operation, the mean value for the reliability is 93.48%, 
while the probability that the reliability is less than 90% (red line) is 28.1%.  
 



 

 
(a) 

 
(b) 

Fig 2 - Estimate of the equipment reliability for 27 years of operation, 𝑅𝑅(27). 
 
4. CONCLUSION 
 
The proposed approaches do not involve directly eliciting the expert opinion about the hyperparameters; this 
allows the adoption of different distributions to describe the basic events without hindering understanding 
during the elicitation process. Also, we adopted an elicitation procedure to fit the Wellmaster results in the 
specific scenarios for a novel expandable production packer of the O&G industry. The elicitation process 
engaged specialists from different areas involved in the equipment development process, allowing for a balance 
between pessimistic and optimistic analyses. Moreover, the procedure was based on the analysis of component 
failure mechanisms. Although the system is new, the components and materials are “old acquaintances” of the 
experts. The methodology considers distinct FTs to deal with different stages of equipment life cycle and, in 
the case study, the two analyzed stages were installation and operation. The results obtained for the equipment 
installation and operation can be used to estimate the equipment reliability, evaluating the performance using 
standards such as API 17N 2018. After the presented analysis, the level of uncertainty for 𝑅𝑅 ≥ 90% is 28.82% 
and, thus, above the maximum limit (20%). This is somehow expected because we are only considering the 
prior distribution of the equipment based on generic data and expert opinion.  
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