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1. INTRODUCTION 

Repairable systems are defined as those which can be reestablished to a typical working state by some 

maintenance activities other than their complete substitution when encountering a failure [1]. After repair, the 

component can be in five states: (1) as good as new, (2) as bad as old, (3) better than old but worse than new, 

(4) better than new, and, (5) worse than old [2,3]. 

Two processes generally used to handle the states (1) and (2) are, respectively, the Renewal processes 

(RP) and the non-homogeneous Poisson processes (NHPP). However, in practical reliability engineering those 

states are often exceptions [2,4]. Generalized Renewal Process (GRP) has arisen as a significant methodology 

for solving these issues by demonstrating the stochastic cycles underlying repairable systems [5,6]. 

Considering that an operation time until the first intervention of the repairable system follows a given 

probability distribution, GRP assigns a rejuvenation parameter, q, to the stochastic process to extend or reduce 

the operation time for the next interventions, employing a virtual age function [5]. When q = 0 the GRP 

corresponds to a state (1) defined as a RP. Otherwise, when q = 1, a NHPP is represented [3]. Kijima [6] 

defines two different types of virtual age models. The type I describes that each intervention only impacts the 

time since the previous failure. Type II model, on the other hand, affirms that the impact is on the complete 

historical lifetime of the system [6].  

GRP has been applied with times to failure assumed to follow a Weibull distribution [2,3,5]. The so-

called Weibull-GRP involves, apart q, a scale and a shape parameters, α and β, respectively. Kaminskiy and 

Krivtsow have applied a Monte Carlo type solution to estimate Weibull-GRP parameters [7]. However, since 

the complexity of the GRP model and the Monte Carlo simulation, the computation is quite time consuming 

[3]. Yañez, Joglar and Modarres [3] applied a maximum likelihood (ML) estimation approach to obtain the 

GRP parameters. 

In contrast, this research aims to evaluate an alternative method for estimation of the Weibull-GRP 

parameters using the Kullback-Leibler divergence of survival functions (KLS) for the same failure data 

analyzed by Yañez, Joglar and Modarres [3]. This method has already been applied for the Weibull distribution 

[8] and in this study this will be extended to the GRP. To the best of our understanding, this is the first time 

that KLS will be applied to this type of distribution. This measure can be understood as a relative entropy 

among two probability distributions [8]. Since the assessment of KL divergence for probability density 

functions can also present numerical convergence issues and in reliability the primary purpose is to research 

the survival function of a given device, the Kullback-Liebler divergence of Survival functions “KLS” is herein 

taken into consideration. As implemented by Liu [9], it will be measured the divergence between the modeling 

of a set of sample data with Weibull-GRP and an empirical survival feature. The KLS function can be 

minimized to obtain estimations for the Weibull-GRP three parameters q (rejuvenation parameter), β (shape), 

and α (scale). 

 

2. APPROACH FOR APPLICATION OF KLS TO ESTIMATE WEIBULL-GRP 

DISTRIBUTION PARAMETERS  

2.1 Weibull-GRP Distribution 

The concept of virtual age (An) is introduced in generalized renovation processes. This parameter 

represents the calculated age of the system immediately after the n-th repair has occurred. When An = y, the 
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system has a time to failure (n+1)-th, namely Xn+1. This time is distributed according to the cumulative 

distribution function (cdf) shown in the Eq. 1 [3]: 

𝐹(𝑋|𝐴𝑛 = 𝑦) =  
𝐹(𝑋 + 𝑦) − 𝐹(𝑦)

1 − 𝐹(𝑦)
 

(1) 

F(X) represents the cdf of the Time To First Failure (TTFF) distribution of a new component or system. 

Considering an inter-arrival of failures that follows a Weibull distribution, the reliability function 𝑅(∆𝑥|𝑥𝑖) is 

defined as [3]:  

𝑅(𝛥𝑥|𝑥𝑖) = 𝑒𝑥𝑝 [(
𝑞

𝛼
𝑥𝑖)

𝛽

− (
𝛥𝑥𝑖 + 𝑞𝑥𝑖

𝛼
𝑥𝑖)

𝛽

] 
(2) 

where,  

q = repair effectiveness parameter or rejuvenation parameter; 

α = scale parameter; 

β = shape parameter; 

xi = real system age; 

ix  = time between failures. 

Replacing ∆𝑥𝑖 with t-xi i ix t x = − , this gives: 
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(3) 

It is worth noting that 𝑞𝑥𝑖 represents the virtual age previously presented.  

2.2 Kullback-Liebler Divergence of Survival Functions 

Kullback-Liebler divergence can be defined as a relative entropy between two probability distributions 

[8]. Given two probability density functions f and g for two continuous random variables X and Y, the Kullback-

Liebler divergence of f in relation to g is defined by: 

𝐷(𝑓||𝑔) =  ∫ 𝑓(𝑥)ln 
𝑓(𝑥)

𝑔(𝑥)
𝑑𝑥

 

ℝ

 (4) 

Since the evaluation of Kullback-Liebler divergence for probability density functions may present 

numerical convergence problems, the Kullback-Liebler divergence of Survival functions “KLS” is herein 

considered. For such an approach, the survival functions F and G are used instead of f and g. Here, the non-

parametric empirical survival function, Gn(x), of a random sample of size n is defined as below [8]: 

Gn(𝑥) = ∑ (1 −
𝑖

𝑛
) 𝐼[𝑋(𝑖),𝑋(𝑖+1)]

𝑛−1

𝑖=0

(𝑥) (5) 

where,  

I: the indicator function; 

(0 = X(0) ≤) X(1) ≤ X(2) ≤...≤ X(n)): the ordered samples. 

Similar to Yari et al. [8] when using Kullback-Liebler divergence to estimate Weibull parameters, after 

defining the empirical survival function, the Kullback-Liebler divergence is adjusted so that the function value 

remains positive during the parameter estimation process. In that way, the function value remains positive 

during the parameter estimation process. Hence, the adjusted Kullback-Leibler divergence (KLS) of survival 

functions Gn(x) and F(x) is given as follows: 

𝐾𝐿𝑆(𝐺𝑛||𝐹) =  ∫ (𝐺𝑛(𝑥) ln
𝐺𝑛(𝑥)

𝐹(𝑥)
− 𝐺𝑛(𝑥) + 𝐹(𝑥)) 𝑑𝑥

∞ 

0

 (6) 



paper: 2046 

3 
 

The terms where F(x) is present, in Eq. 6, are functions of Weibull-GRP parameters q, α and β, which 

is the basis for the parameter estimation by minimizing the KLS. 

3. RESULTS AND DISCUSSION 

3.1 Validation Data 

To validate the application of KLS for Weibull-GRP parameter estimation it is considered the failure 

data from a U.S.S Halfbeak No. 3 main propulsion motor, same used by Yañez, Joglar and Modarres [3]. Tab.1 

presents this dataset. 

Tab. 1 - Time between failures for U.S.S. Halfbeak’s example [3] 

# TBF # TBF 

1 860 13 367 

2 1608 14 2758 

3 1134 15 355 

4 2703 16 1084 

5 645 17 855 

6 95 18 280 

7 1278 19 490 

8 605 20 945 

9 344 21 105 

10 1054 22 127 

11 680 22 61 

12 405 24 326 

3.2 Parameter Estimation Results 

The parameter estimation for the Weibull-GRP is obtained by minimizing the KLS function. In the 

current work, the optimization method used for KLS minimization and parameter estimation was the 

Differential Evolution method [10]. This technique optimizes the function by a given set of candidate solutions 

and creating new candidate solutions by combining existing ones. The solution is the one that presents the best 

fitness on the optimization problem [10]. Python is the programming language applied to solve the problem. 
The space search ranges applied for each parameter are: 

● q: (0.0001, 1.0); 
● α: (1000, 3000) hours; 
● β: (1.0, 3.0). 

By using the Differential Evolution optimization method for minimizing the KLS function of q, α, β the 

results presented in Table 2 were obtained. It can be seen that the values obtained for q and β are similar from 

the ones obtained by Yañez, Joglar and Modarres [3] using the ML method. However, the α parameter is not 

that close. For validation purposes, the KLS function value was evaluated for the two solutions obtained with 

the different methods. The minor the result, the better. We can conclude that the KLS method is indeed smaller 

when evaluated for the parameters herein obtained. 

Tab. 2 – Parameter estimation based on ML and based on minimization of KLS 

Method 𝑞̂ α̂ (hours) β̂ KLS function value 

ML 0.1460 1828.00 2.026 14925.21 

Kullback-Leibler 0.1951 2960.50 1.916 13071.47 

4. CONCLUSIONS 

The proposition of the current work is to use an alternative method to estimate Weibull-GRP parameters, 

by using the Kullback-Liebler divergence of survival functions. The optimization was performed using the 

Differential Evolution method, which optimizes the function by a given set of candidate solutions and creating 

new candidate solutions by combining existing ones. The solution is the one that presents the best fitness on 
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the optimization problem. For the analyzed data, the optimization of KLS function has provided a similar 

solution as presented by Yañez, Joglar and Modarres  [11]. The advantage of the proposed method is that when 

estimating the probability distribution parameters, it does not want to solve the standard "monotonic" 

likelihood trouble. From a practical perspective, the GRP allows the prediction of the expected number of 

failures in a given time and the expected time to the next failure without having to deal with the traditional 

approaches of "as good as new" and "as bad as old". In addition, the parameter "q" can be used as an index of 

the effectiveness of the repair. Moreover, the KLS methodology is very flexible because it uses a survival 

function instead of a density function. It can easily estimate the survival function from the observed sample 

data. Finally, the KLS method can be used for any distribution and is very useful in the fields of science, 

engineering, and medical science. 
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