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ABSTRACT 
 
The maintenance task interval is an important step for maintenance plan effectiveness. Assuming that 
maintenance task exist to prevent or predict failures, when the task frequency is not properly determined, it 
may be excessively, reducing equipment availability and increasing maintenance costs, or it may not be 
effective by not capturing failure before it happens, therefore, reducing equipment availability and increase 
maintenance costs. In this way, maintenance task interval must be properly defined. 

This paper proposes an intermediate mathematical model to assist maintenance and reliability engineer to 
establish the best inspection interval when there is just available mean time to failure (MTTF), mean time 
between failures (MTBF) or constant failure rate (𝜆𝜆) parameters. This model uses the concept of test interval 
for failure finding enhanced by costs parameters used on optimal preventive replacement interval and optimal 
inspection interval to establish the optimal inspection interval that minimize equipment failure costs. In 
addition to this feature, this model can be used to calculate the risk taken on the maintenance task deferment. 

 

1. INTRODUCTION 
 
In Oil and Gas industry, most of maintenance task intervals are estimate based on the expert’s judgment or 
manufacturer recommendation. It is a common sense that the manufactures are quite too conservative when 
defining the maintenance tasks periodicity, since they cannot control the equipment operation context. In other 
words, the manufacture recommendation should cover a variety of operation condition. 

Looking into the expert’s judgments, it is important to highlight there is a lot in variables that could influence 
their judgment. Some are quite more conservative, other are more risk taken. Some has more experience about 
the failures modes and the equipment failures frequency, others not much. Some are influenced by the 
company´s culture or other opinions, while some are very loyal to their knowledge and believes. In other 
words, the maintenance task periodicity tends to be biased by the company’s team that have defined the 
maintenance tasks periodicity. 

Many different approaches can be used to obtain maintenance task intervals. The quantitative approach 
methods, which take into consideration the equipment or component reliability curves, must take into 
consideration objective functions for costs and availability. Mathematical models, like optimal preventive 
replacement interval and optimal inspection interval, are based on cost or availability balancing functions to 
failures and preventive replacement. These models are conceived to be used only with increasing failure rate 
functions. On the other hand, mathematical models to determine intervals for failure finding tasks, may be 
used with a constant failure rate, but do not take into consideration costs parameters, which is wise since they 
are committed with safety. 
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2. OPTIMUM MAINTENANCE INTERVALS OVERVIEW 
 

2.1 Introduction 
 
Calculation of optimum maintenance intervals is one of the biggest challenges in a maintenance program. The 
use of incorrect intervals can lead the equipment to operate in non-profit scenario even though maintenance 
strategy was adjust correctly. Many qualitative and quantitative methods exists in literature to determine the 
optimum intervals, since the most easy method like Age Exploration – applied only when good statistical data 
is not available and experience to guess at task intervals is really the only option – until advanced statistical 
methods which uses distributions functions obtained from equipment life data (SILVA, 2017, p. 63). 
 
 
2.2 Age Exploration 
 
The age exploration (AE) technique is strictly empirical. It works like this illustrative example: supposing an 
initial overhaul interval for a fan motor is 3 years and after the first overhaul, inspections reveal no such wear 
out or aging signs, than the initial interval is increased automatically by 10%. Repeat the process, continuing 
until, on one of the overhauls, incipient signs of wear out or aging are inspected. At this point, the AE process 
stops, perhaps back off by 10%, and define this as the final task interval (SMITH; HINCHCLIFFE, 2003, p. 
126–127). 
 
 
2.3 Cost-Based Models 
 
If cost, due to the high cost of replacement after failure, is the appropriate criterion to be applied as objective 
function to determine preventive maintenance interval, then a cost-based model is desired. A model proposed 
by (BARLOW; HUNTER, 1960) determine the optimum age time for preventive maintenance action which 
minimizes global costs: 
 
 

𝑡𝑡𝑐𝑐∗ =  𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡  𝑓𝑓𝑐𝑐(𝑡𝑡) = 𝐶𝐶𝑝𝑝𝑅𝑅(𝑡𝑡) + 𝐶𝐶𝑢𝑢𝐹𝐹(𝑡𝑡)

∫ 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡
0

    (1) 

 
where: 
 
t*

c: optimum age cost-based preventive maintenance interval; 
fc(t): age preventive maintenance cost function; 
R(t): reliability function; 
F(t): probability of failure function; 
Cp: cost of preventive task; 
Cu: cost of corrective task; 
t: time. 
 
 
2.4 Constant Failure Rate Models 
 
The constant failure rate models methodology applied to determine optimal maintenance intervals was 
developed to work around on a commonly companies’ weakness of data collection. It is very usual to see 
companies collecting failure at a time interval to calculate MTTF or not collecting any kind of data at all. For 
those that do not collect data, [OREDA, 2015] reference could be a great source of data. The OREDA or MTTF 
can just provide the failure rate parameter 𝜆𝜆, which represents a constant failure rate. 
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It is known that some of those failures rates presented by OREDA or when calculated by MTTF approach, 
could be better represented by an increase failure rate function if proper collected and analyzed. In absence of 
better data, the methodology described herein aim to move from the qualitative approach represented by the 
expert judgment and manufacturer recommendation to a quantitative approach based on cost balancing when 
the company just have the MTTF information on hand. 
 
To be able to apply this methodology is imperative to assume the following assumptions: 
 

• the probability to be in a failed state at time t is equal to the probability of having failed before t, i.e., 
randomness. Therefore, the failure rate is constant with time, equipment does not age; 

• inspection is perfect, it always detects an existing failure; 
• inspection and repair are perfects, and the duration is negligible or too short compared to the interval 

between inspection; 
• after inspection, the equipment is assumed to be as good as new; 
• failure rate represents the equipment failure behavior for the specific maintenance inspection. 

 
It is important to clarify that this model are not suitable for safety systems due to cost minimizations objectives 
purposes. 
 
 
3. OPTIMAL INSPECTION MODEL FOR CONSTANT FAILURE RATE 
 
3.1 Mean Probability of Failure Function 
 
The exponential cumulative distribution function,  
 
 

𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆      (2) 

 
is applied to modeling failures with randomness, i.e., the modeled equipment does not age. In terms of 
inspection, it means that the chance of an item fail after the inspection is equal to any time before the inspection. 
 
The conditional reliability function, 
 
 

𝑅𝑅(𝑇𝑇, 𝑡𝑡) = 𝑅𝑅(𝑇𝑇+𝑡𝑡)
𝑅𝑅(𝑇𝑇)

=  𝑒𝑒
−𝜆𝜆(𝑇𝑇+𝑡𝑡)

𝑒𝑒−𝜆𝜆𝜆𝜆
=  𝑒𝑒

−𝜆𝜆𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆

𝑒𝑒−𝜆𝜆𝜆𝜆
=  𝑒𝑒−𝜆𝜆𝜆𝜆

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯�  𝐹𝐹(𝑡𝑡) = 1 − 𝑅𝑅(𝑡𝑡)  

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯�  𝐹𝐹(𝑡𝑡) = 1 −  𝑒𝑒−𝜆𝜆𝜆𝜆 (3) 

 
calculates the probability that an item will survive in the next desired time assuming it has survived for a 
specific time. Observing the results in (3): the exponential reliability conditional function is equal to the 
exponential reliability function. In other words, the probability that an item will fail, in the next desired time 
assuming it has survived for a specific time, is equal to the cumulative probability of failure at the entire 
evaluated period.  
 
The exponential failure rate function, 
 
 

𝜆𝜆(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)
𝑅𝑅(𝑡𝑡)

=  𝜆𝜆𝑒𝑒
−𝜆𝜆𝜆𝜆

𝑒𝑒−𝜆𝜆𝜆𝜆
  
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯�   𝜆𝜆     (4) 

 
yields to a constant failure rate parameter. It means the failure rate is the same to the entire period of interest. 
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Due to the behavior of the exponential distribution, one can conclude that this function models item that not 
age. Thus, for any time in the period of interest, the failure rate is the same. In other words, the probability that 
an item will failure in the next time is the same the time before.  Based on this definition, the equipment 
(inspected items) need to be consider as good as new after inspection since the test or inspection is assume to 
be perfect (it always detects an existing failure). Therefore, if failure is detected, the repair is done and 
considered perfect as well. Its duration is negligible or too short compared to the interval between test or 
inspection. 
 
It is important to highlight that inspection or test performed during the maintenance task is assumed be capable 
to identify any degraded or incipient failure modes that could lead to the equipment failure. Note that failure 
rate 𝜆𝜆 used in the model needs, as close as possible, represents the failure mode. As stated before, the 
probability that an equipment fails is equal at any time within the inspection interval. Based on that, and in 
order to avoid be too conservative, this methodology assumes the inspection time is the mean of the exponential 
cumulative distribution function. This assumption is also in accordance with the Det Norske Veritas (DNV) 
methodology based on [IEC 61508, 2010] for periodic test of protection system and according to [MOUBRAY, 
2002, p. 177]. 
 
Applying the mean value theorem for definite integrals to the exponential probability function (2) yields to:  
 
 

𝐹𝐹�(𝑇𝑇) =  1 − 1
𝜆𝜆𝜆𝜆

 �1 −  𝑒𝑒−𝜆𝜆𝜆𝜆�     (5) 

 
this function can be used to define the equipment inspection interval based on MTTF. 
 
 
3.2 Optimal Inspection Interval for Minimal Cost 
 
Minimize the long-term maintenance cost is pursued by the majorities of the maintenance manager. Due to 
that, eq. (5) is combined with the cost of the failure and the cost of the inspection to minimize total inspection 
routine cost.  The total inspection routine cost, TIRC: 
 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐼𝐼𝑅𝑅𝑅𝑅 + 𝐸𝐸𝐹𝐹𝐹𝐹       (6) 

 
where: 
 
TIRC: total inspection routine cost; 
IRC: inspection routine cost; 
EFC: expected failure cost. 
 
is the sum of inspection routine cost and the expected failure cost. The inspection routine cost: 
 
 

𝐼𝐼𝑅𝑅𝑅𝑅 = 𝐸𝐸𝑝𝑝𝑝𝑝
𝐼𝐼𝑝𝑝𝑝𝑝

∙ 𝐼𝐼𝑐𝑐      (7) 

 
where: 
 
Epu: evaluation period; 
Ipu: inspection periodicity; 
IC: inspection cost. 
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must be defined for a specific period since it is a periodic activity and presents the total inspection cost for 
evaluated period. The evaluation period unit can be define, for example, as the time where the exponential 
cumulative probability of failure is equal to 95%. This is obtained by applying the inverse of the exponential 
cumulative distribution function at 95% of probability of failure. 
 
The expected failure cost: 
 
 

𝐸𝐸𝐹𝐹𝐹𝐹 = 𝐹𝐹�(𝑡𝑡𝑖𝑖) Ucc      (8) 

 
where: 
 
𝐹𝐹�(𝑡𝑡𝑖𝑖): mean of cumulative probability function for exponential distribution; 
UCC: failure cost; 
ti: time for ith interval. 
 
 
is calculated by the mean cumulative probability function (5) of the failure multiplied by the cost of the failure. 
Considering the equipment “as good as new” after inspection, the repair is assumed perfect. Therefore, the 
probability of failure in each inspection interval is the same. 
 
The cost variable set up is very important to ensure accurate results. Considering the cost composition, one 
will inform to the model, the weight of inspection task and unplanned corrective task. The inspection cost 
composition encompasses the manhours cost, spare parts costs, rental tools cost, production losses whether the 
inspection task disturbs the facility operation. 
 
If the inspection causes production unavailability, this production loss cost should be considered in the 
inspection cost composition. However, if the inspection could be proper planned to be performed in an 
operational window, thus, it does not cause production loss. 
 
The cost of unplanned corrective task encompasses the corrective maintenance cost itself to restore the 
equipment function and the failure effect cost. The corrective maintenance cost encompasses the manhours 
cost, spare parts cost, third part cost, rental tools cost in emergency context. 
 
 
4. RESULTS 
 
The example used to apply the mathematical models to obtain the optimal inspection interval with minimal 
inspection routine cost, uses the following data parameters: 
 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 20 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠
𝜆𝜆 = 0.05

𝐸𝐸𝑝𝑝𝑝𝑝 = 60 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠
𝐼𝐼𝐶𝐶 = $1,000.00

𝑈𝑈𝐶𝐶𝐶𝐶 = $50,000.00

      (9) 

 
Figure 1 presents the cost curves for inspection routine cost (IRC), expected failure cost (EFC) and total 
inspection routine cost (TIRC). The optimum intervals obtained was 8 months with IRC = $7,500.00, EFC = 
$8,790.01, TIRC = $16,290.0 and a mean reliability of 82,4 %. The computer algorithm used to develop the 
inspection cost optimization models was MatLab [MATHWORKS, 2003].   
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The influence of inspection routine cost (IRC) and expected failure cost (EFC) to determine optimal inspection 
interval can be observed in figure 2. As the ratio of cost Ucc/Ic decrease, i.e., the failure cost approximate to 
inspection cost, the optimum intervals increase in an exponential behavior.  
 
 

 
Figure 1 – Optimal inspection interval for minimum TIRC cost. 

 
 

 
Figure 2 – Optimal inspection interval for failure/inspection cost ratio. 
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5. CONCLUSION 
 
It was presented and developed in this paper a mathematical model to obtain an optimal inspection interval 
that minimizes total inspection route costs. The model uses constant failure rate commonly found in typical 
reliability database resources.  
 
The simplicity of the proposed model allows maintenance professionals to set optimal inspection intervals 
avoiding apply Monte Carlo simulations or complex algorithms to lifetime data analysis with historical time 
to failures data.  
 
For future works, it is planning to develop and apply the followings topics: 
 

• develop the objective function to set optimal inspection interval that maximizes the availability of 
equipment or item studied; 

• apply multi-objective functions to maximizes availability and minimize inspections costs at same 
time; 

• compare optimal inspection intervals for constant failure rate with results using increasing failure 
rates with Monte Carlo simulations; 

• publish worldwide the algorithms developed by using web API services.  
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