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ABSTRACT 
 

Bowtie approaches are powerful tools in risk analysis. From the semi-quantitative perspective, logic gates 
might be used in system modeling to obtain the consequence frequencies and risk information. However, the 
model results are affected by the uncertainty that can emerge from subjective evaluation, data variation, or 
lack of data. Fuzzy logic helps to deal with system uncertainty and apply intuitively specialist elicitation. Few 
papers, most of them related to fuzzy fault trees, only use fuzzy sets and fuzzy mathematical relations to deal 
with uncertainty and still obtain equations that resemble those that originated from a traditional quantitative 
method. This work develops an application in Python language using fuzzy sets and Takagi-Sugeno inference 
system, aiming to deal with the uncertainty and facilitate the assimilation of the specialist knowledge about 
the system. The model outputs top event and outcomes frequencies. A comparison with an arithmetic fuzzy 
bowtie study is accomplished to validate the results. 
 
1. INTRODUCTION 
 

The complexity of the chemical processes nowadays means that the system is composed of a significant 
number of components, various procedures, and various human responsibilities. These increase the chance of 
the system coming to multiple failures developing in an accident. Major chemical disasters are known by their 
severity: Chernobyl (1986), Bophal (1984), and Seveso (1976). The risk assessment concept emerges as an 
important tool involving mathematical and analytical methods providing the safety of chemical industries. 
Khan & Abbasi (1998) said that the science behinds risk assessment, which emerged in recent years, 
approaches three critical aspects of accident in the chemical process: the progress of techniques and tools to 
forecast accidents, the improvement of techniques and tools to analyze consequences of these possible 
accidents and progress of management strategies to prepare for emergencies or mitigate damage. Khan, 
Rathnayaka, and Ahmed (2007), by categorizing risk techniques (approaching the last two of three key aspects 
cited) in quantitative, qualitative, semi-quantitative, and hybrid, pointed out that quantitative and hybrid 
techniques researches have increased in the last years in the field.  

The bowtie technique is used as a combination of a fault tree and an event tree and, although very promising, 
has not been explored in the technical and scientific literature. The combination of logical operators allows the 
calculation of the frequency of consequences of an accident, while the frequency of that accident is calculated 
by entering the frequency of basic events. Most works do not consider an important aspect of the bowtie: 
method, the barriers (control measure to prevent a threat or mitigate a consequence). And this perspective of 
the method is largely adopted in an industry context, where the bowtie initially emerged as a qualitative tool 
[3]. These two appointments, about the academic and industry contexts, show that a new method providing the 
aggregation of quantitative and qualitative aspects, considering the bowtie structure used in the industry, is an 
excellent opportunity to be studied. 

But the calculation carried out by the quantitative or hybrid techniques is usually affected by the imprecision 
and vagueness inherent from the data used as input. This information can be originated from the subjective 
knowledge of the specialist about the system or a database with a lack of data. To deal with this problem, fuzzy 
theory can overcome the imprecision and vagueness, once resembling human reasoning from a mathematical 
interpretation. Also, the inference methods included in the fuzzy theory can capture the operator's knowledge 
about the system and turn it into logical rules (IF-THEN). Two of these methods can be highlighted: Mamdani 
and Takagi-Sugeno. All the works related to the fuzzy bowtie approach only use fuzzy sets to define linguistic 
terms and arithmetic operations between them but don’t use inference methods. The inference method as part 
of the fuzzy bowtie method can better consolidate all the subjectivity knowledge about the relation between 
two basic events. 



 

This paper provides a new fuzzy bowtie method, which Takagi-Sugeno was used as an inference method. 
A case study of an isobutane storage tank rupture presented in Markowski et al. (2009), applying an arithmetic 
fuzzy technique, served as a comparison basis to the system responses once the bowtie from this work was 
built based on that work. Using this method, the paper intends to show how bowtie can be helpful as a hybrid 
tool. Using fuzzy logic can deliver a more precise result and better aggregate the subjective knowledge about 
the process. 
 
 
2. Fuzzy Fundamentals 
 

The fuzzy theory is derived from the concept of multivalued logic developed by notable logicians Jan 
Lukasiewicz, Bertrand Russel, and Max Black, a concept from the early 1930s. When introduced at that time, 
the theory was not coined by the term fuzzy, and it was usually called the term ‘vagueness’. The term fuzzy 
came to be used when Professor Lofti Zadeh developed his theory coining the term ‘fuzzy’[5]. 

The theory developed by Zadeh defines the fuzzy sets, in what each element of that has set membership 
degree. It differs from the classical set theory, in which the components are classified into two groups: members 
and nonmembers. The fuzzy logic allows classifying the elements between a range of 0 to 1, called membership 
degree. This theory characteristic supports the mathematical interpretation of terms and expressions used by 
specialists or operators in process safety meetings (very high, fairly high, or high). The membership degree is 
defined by the membership functions (Figure 1). different types of these functions: Triangular, Trapezoidal, 
Gaussian, Sigmoid. They are chosen considering the characteristics of the application. 
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Figure 1 Trapezoidal membership function 

The fuzzy theory embraces the called fuzzy rule-based system, prevalent in control process applications. It 
is used to make decisions and turn this into heuristic rules. As to structure a rule-based system, four steps must 
be accomplished. 

The first one is fuzzification, which is the conversion of a crisp value into a fuzzy value. This step is the 
only way to make the system entries compatible with linguistic terms represented by fuzzy sets in the rule base. 

Following the fuzzification comes the knowledge base, which consists in what is known about the process. 
The operators' knowledge about relations between inputs and consequences will provide a practical base to 
define membership functions. 

Once the fuzzy sets are settled, the rule base can be defined. The knowledge-basis is expressed as a set of 
IF-THEM rules where the knowledge of operators and specialists can be put together, as the example: 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 < 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐿𝐿𝐿𝐿𝐿𝐿 >  𝑨𝑨𝑨𝑨𝑨𝑨 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 < 𝐿𝐿𝐿𝐿𝐿𝐿 >  𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 < 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐿𝐿𝐿𝐿𝐿𝐿 > 
 
These rules can be interpreted using various inference methods. The most recognizable are the Mamdani 

method (1) and the Takagi-Sugeno method (2). The first one uses linguistic variables as antecedent and 
consequent, and the second uses linguistic variables as antecedent and mathematical functions as consequent. 
Each rule will obtain a result depending on the degree of membership related to their antecedents, and the 
aggregation of these rules will deliver the final result. 

 
𝑰𝑰𝑰𝑰 𝑥𝑥𝑖𝑖  is 𝐴𝐴 𝑨𝑨𝑨𝑨𝑨𝑨 𝑦𝑦𝑖𝑖  is 𝐵𝐵 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑧𝑧𝑖𝑖  é 𝐶𝐶 (1)  

 
𝑰𝑰𝑰𝑰 𝑥𝑥𝑖𝑖  is 𝐴𝐴 𝑨𝑨𝑨𝑨𝑨𝑨 𝑦𝑦𝑖𝑖  is 𝐵𝐵 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑧𝑧𝑖𝑖 = 𝑎𝑎1𝑥𝑥𝑖𝑖 + 𝑏𝑏1𝑦𝑦𝑖𝑖 (2) 

 



 

 At last, the defuzzification process turns the fuzzy value into a crisp value. There are various 
defuzzification methods: centroid, bisector, mean of maximum, min of maximum, and max of maximum. Also, 
the choice of one of them depends on the application characteristics. In the case of the Takagi-Sugeno method, 
there is no need for defuzzification once the consequent of the rules is already a crisp value. There are different 
orders of Takagi-Sugeno. For instance, the rule shows an example of first-order. Also, Takagi-Sugeno zero-
order can be viewed as a particular case of the Mamdani inference method, where the consequent is seen as a 
fuzzy singleton (Figure 2). 
 

 
Figure 2 Example of a fuzzy singleton function 

3. DESCRIPTION 
 

3.1 Bowtie case study 
 

The case chosen to apply the fuzzy bowtie method was the system proposed by Markowski et al. 
(2009). A bowtie of isobutane storage tank rupture in Figure 3 shows the combination of a fault tree and 
an event tree without the barriers. The main focus of this study is the inference method application. 

 

    
Figure 3 Bowtie designed structure (Markowski et al., 2009) 

 
3.2 Fuzzy bowtie structure 

 
The traditional logic operators in the previous structure, on the left side, were changed by fuzzy 

Takagi-Sugeno inference nodes (T-S nodes), see Figure 4. Unlike what Markowski et al. (2009) carried 
out on the right side, it was defined fuzzy probability numbers to YES/NO alternatives, the new structure 
kept the crisp values in this study. 

 



 

 
Figure 4 Fuzzy Bowtie (Takagi-Sugeno inference) structure 

 
3.3 Definition of Fuzzy Sets 
 
The fuzzy numbers parameters are given in Table 1. In this study, fuzzy trapezoidal numbers are proposed 

inspired by the related work [4]. As to facilitate dealing with the parameter adjustment, it was used the 
logarithmic calculation of the frequencies. Figure 5 shows the fuzzy sets depicted in the graph highlighting the 
smooth transition from one set to another. 

 
Table 1 Frequency fuzzy numbers parameters used in the bowtie right side 

Variable Fuzzy set Fuzzy trapezoidal number 

‘OR’ NODE 
‘AND’ NODE 

Impossible (I) [5.12, 5.60, 8, 8] 
Very Low (VL) [4.12, 4.60, 5.12, 5.6] 

Low (L) [3.12, 3.60, 4.12, 4.6] 
Moderate (M) [2.12, 2.60, 3.12, 3.60] 

Fairly High (FH) [1.12, 1.60, 2.12, 2.60] 
High (H) [0.12, 0.6, 1.12, 1.60] 

Very High (VH) [0, 0, 0.12, 0.60] 
 
 

 
Figure 5 Trapezoidal functions graph from the defined fuzzy sets 

 
3.4 Basic Events Inputs 

 
The inputs used by Markowski et al. (2007) were replicated (Table 2). The crisp values were 

considered the mean values of the fuzzy trapezoidal set of each linguistic term. 
 

Table 2 System inputs: Crisp values and linguistic terms  
LIAH PI HE DS SV 

Input values 1 1 2 2 2 
Linguistic terms [4] H H FH FH FH 

 



 

 
3.5 Python Program 

 
The application was developed in Python language using the Fuzzylab library [6], a library based on 

the Octave fuzzy logic toolkit. Also, two more libraries were used to support the analysis of the results: 
Matplotlib and Numpy. 

 
 
4. DISCUSSION 
 

4.1 Formulation of rule base 
 

Once the linguistic terms and their fuzzy sets were defined, the rules were formulated based on the relation 
between the events. These relations were obtained by previous specialist knowledge. It was generated forty-
nine rules to describe the system. Table 3 shows an example of ‘OR’ rules. 

 
Table 3 Rules examples used for Takagi-Sugeno Inference in node 1. 

Rule 

IF 

Event failure 
frequency 1 

AND 

Event failure 
frequency 2 

THE
N 

Failure 
frequency result 

1 Very Low Very Low Very Low 
2 Low Low Low 
3 Very Low Low Low 
4 Low Very Low Low 
5 Moderate Moderate Moderate 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

43 High High High 
44 Very Low High High 
45 High Very Low High 
46 Low High High 

 
4.2 Adjustment of Zero-order Takagi-Sugeno consequent parameters  

 
This work used Takagi-Sugeno zero-order inference, which required adjusting the consequent parameters, 

representing the linguist term assigned in the rules. The final values can be seen in Table 4.  
Figure 5 illustrated these parameters as singleton functions, reinforcing that zero-order Takagi-Sugeno 

inference could be considered as a particular case of the Mamdani inference method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 Frequency fuzzy numbers parameters used in the bowtie right side 



 

 
‘AND’ node  ‘OR’ node 

Impossible (I) 8.0 Impossible (I) 6.6 

Very Low (VL) 6.5 Very Low (VL) 5.0 

Low (L) 5.3 Low (L) 3.4 

Moderate (M) 4.4 Moderate (M) 2.8 

Fairly High (FH) 3.1 Fairly High (FH) 2.1 

High (H) 2.7 High (H) 1.3 

Very High (VH) 0.0 Very High (VH) 0.0 

 

 
(a)  

(b) 
Figure 5 (a) Zero-order T-S rules parameters for ‘AND’ node represented as singleton functions graph; 

(b) Zero-order T-S rules parameters for ‘OR’ node represented as singleton functions graph. 
 
 
4.3 Response surface for ‘AND’ node and ‘OR’ node 

 
Once the system was coded in Python and parameters defined, the program was run for various input 

frequencies between a range of zero to eight [0,8]. Thus, resulting in a response surface for ‘AND’ and ‘OR’ 
nodes (Figure 5). It demonstrates the behavior related to the results from the combination of two events 
frequency variation. 

 

 
(a) 

 
(b) 

 
Figure 5 (a) Response Surface for ‘AND’ node frequencies; (b) Response Surface for ‘OR’ node frequencies. 



 

 
 

4.4 Comparison of zero-order Takagi-Sugeno inference and Markowski Fuzzy arithmetic 
operations 

 
Table 5 shows the results of frequencies of top event and outcomes to arithmetic fuzzy bowtie and a 

fuzzy bowtie Takagi-Sugeno inference. It is important to emphasize that the safety functions frequency of 
failure in the event tree were considered for ‘Early Ignition’, 0.80 for ‘YES’, and 0.20 for ‘NO’. And for 
‘Late Ignition’, 0.60 for ‘YES’ and 0.20 for ‘NO’.  

The top event result for the two methods differed 2.82e-3 from each other, with Takagi-Sugeno fuzzy 
bowtie having the lower frequency. This difference is not relevant, given the magnitude of the value. All 
values of the outcomes, from the Takagi-Sugeno fuzzy bowtie, were higher when compared with the 
results of Markowski et al. (2007). This difference is related to the choice about not using fuzzy numbers 
to define the safety functions in the fuzzy bowtie system, the opposite of an arithmetic fuzzy bowtie system. 

 
Table 5 Frequency fuzzy numbers parameters used in the bowtie right side 

 
 
 
 
 
 
5. CONCLUSION 
 

A fuzzy bowtie using the zero-order Takagi-Sugeno inference method was coded in Python language. The 
values of the top event and outcomes frequencies were obtained to observe the system response, also 
comparing them with arithmetic fuzzy bowtie results. These observations showed that the system response is 
consistent with what was expected.  

Other studies on inference methods, as pondered Mamdani and Mamdani, are being carried out. The 
following steps will be related to incorporating barriers in the structure, calculating the risk, and building a risk 
matrix using an inference method. Using Mamdani will indicate the degree of membership related to the results 
(78% High, 22% Moderate), allowing the specialists to understand better the information produced by the 
hybrid risk assessment method. 
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