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ABSTRACT 
 

Managing the risk of operating welded rigid risers requires tools for establishing acceptable defect sizes. In a 
reliability-based approach, these are determined based on a target reliability, which needs to be respected for 
the lifetime of the riser. This is an inverse fracture mechanics problem, since one needs to find the acceptable 
defect size at time zero, which leads to an acceptable failure probability at the end of the design life. Also, one 
needs to consider random sea states, random crack propagation parameters, uncertain initial crack sizes and 
their probabilities of detection. In order to solve the inverse stochastic fracture mechanics problem, we propose 
a hybrid method, which combines the best features of Monte Carlo Simulation (MCS) and the First Order 
Reliability Method (FORM). The non-linear crack propagation phase of the problem is handled by MCS; the 
final fracture problem is handled by FORM; and the allowable crack size, required in order to impose a 
minimum lifetime reliability, is obtained by simple root-finding, among the set of initial crack size samples. 
Efficiency is achieved: a) by classifying initial crack size samples, and computing only those terms effectively 
contributing non-zero probabilities to the integral; and b) by solving the optimization problem using the 
information acquired from a single Monte Carlo run. The proposed hybrid approach is employed in solution of 
typical welded riser crack propagation problems: it is shown that it gains efficiency when the target reliability 
is large, as expected in practical structural engineering problems. 
 

1. INTRODUCTION 
 
The inverse fracture mechanics problem to be addressed herein is a particular case of inverse reliability problem. 
In inverse structural reliability problems, a target reliability level is established, and one looks for the structural 
parameters for which required reliability levels are achieved [1, 2]. Following Mínguez, Castillo and Hadi [3], 
these problems may be seen as special cases of the more general Reliability-Based Design Optimization 
(RBDO) problems [4-9]. 

In the literature, many methods have been proposed to solve inverse reliability problems. The first attempts to 
deal with these problems [1-2, 10-13] basically employed transformations and algorithms associated with the 
First Order Reliability Method (FORM), such as the transformation to the normal standard space and some 
modified versions of the HLRF (Hasofer-Lind-Rackwitz-Fiessler) algorithm. Although the applications are 
broad, practical examples related to the offshore industry appear in many of these papers, e.g. [2, 11-12]. 

Unfortunately, for certain problems, most of the methods cited above lose efficiency, or are not applicable at 
all. This happens, for example, in problems presenting complex time-dependency (e.g. non-linearity), or multi-
dimensional problems, like those involving metal fatigue. In the latter case, depending on how the crack 
propagation phenomena is modelled, large numbers of load cycles may lead to very high problem-
dimensionality, with thousands to millions of variables, and gradients which are either unstable by nature and/or 
difficult to compute. Most of the methods cited above depend on gradient calculations. Moreover, use of 
surrogate models, which could help to alleviate the computational burden, is often inefficient for high 
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dimensional problems. Adding to the difficulties above, metal fatigue is significantly impacted by uncertainties 
in stochastic loads and in random crack growth parameters. Hence, the necessity to develop specific methods to 
solve inverse time-variant reliability (fatigue) problems should be evident. 

The problem of our immediate interest relates to acceptance criteria for flaws in metallic structures. More 
specifically, interest lies in establishing the maximum size of initial flaws, such that an offshore structure subject 
to millions of random load cycles and to significant uncertainty in crack growth parameters, reaches its intended 
design life with a pre-determined reliability level. Solution to this problem can be very challenging, as it involves 
a very large numbers of random variables and/or stochastic processes, unstable gradients and random variables 
with strongly non-Gaussian distributions. This includes truncated flaw size distributions, which may cause 
problems in pure FORM-based algorithms. The proposed approach targets high efficient and stability, as a trade-
off for the greater generality of other methods from the literature. 

 

2. STRUCTURAL RELIABILITY, FRACTURE MECHANICS AND THE INVERSE 
RELIABILITY PROBLEM 

 

2.1 Structural reliability 
 
Let us consider 𝑛௥௩ random variables grouped into a vector 𝑿 = ൛𝑋ଵ, 𝑋ଶ, … , 𝑋௡ೝೡ

ൟ, with joint probability density 

function (PDF) 𝑓𝑿(𝒙), and whose realizations are represented by 𝒙 = ൛𝑥ଵ, 𝑥ଶ, … , 𝑥௡ೝೡ
ൟ. In the time-dependent 

problems considered herein, the vector of random variables may also represent stochastic processes, such as the 
fatigue crack growth, which are discretized over a number of load cycles. In this case, correlation between some 
random variables could be necessary to correctly describe the stochastic processes at hand. 

Failure is characterized by a limit state function, 𝑔(𝑿), which divides the failure and safe domains, Ωf and Ωs, 
given by: 

Ω௙ = {𝒙|𝑔(𝒙) ≤ 0}

Ω௦ = {𝒙|𝑔(𝒙) > 0}
 (1) 

so that 𝑔(𝒙) ≤ 0 indicates failure of the structure for a given realization, x, of the vector of random variables. 
The limit state function can be a single analytical function, but can also involve more complex analytical and/or 
numerical terms.  

By definition, the failure probability related to 𝑔(𝒙) is given by: 

𝑃௙ = 𝑃ൣ𝑿 ∈ Ω௙൧ = ∫ 𝑓𝑿(𝒙)𝑑𝒙
ஐ೑

. (2) 

The failure probability is associated to the so-called reliability index, β, by means of: 

𝑃௙ = Φ(−𝛽), (3) 

where Φ(.) is the cumulative distribution function (CDF) of the standard normal distribution. 

Only in a few cases the multidimensional integral in Eq. (2) can be solved analytically, or by means of classical 
numerical integration. In most cases, solutions are only possible or viable via specific structural reliability 
methods, such as FORM and MCS. These methods are described, for example, in Ditlevsen and Madsen [38] 
and Melchers and Beck [39]. 

Solution by simple, or crude, MCS is obtained via Eq. (4), by randomly generating nMC samples of X according 
to its joint distribution, 𝑓𝑿(𝒙), and evaluating a so-called indicator function, 𝐼[𝒙], on these samples. For each 
sample xi, which corresponds to the ith simulation, the indicator function results one if xi belongs to the failure 
domain, and zero otherwise. 
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𝑃௙ = 𝐸ൣ𝐼[𝑿]൧ ≅
ଵ

௡ಾ಴
∑ 𝐼[𝒙௜]௡ಾ಴

௜ୀଵ . (4) 

In general, the smaller the structural failure probability, the higher the number of samples required to achieve 
convergence of the failure probability estimate given by Eq. (4). This may lead to very large computational 
costs, depending on the computational expense required per simulation, especially because engineering 
structures usually present very small failure probabilities. However, although many simulation-based methods 
with faster convergence are available in the literature [40-42], crude MCS is a very simple and general method, 
employed in the solution of many problems and commonly taken as a reference to verify the accuracy of other 
methods. 

On the other hand, solution by FORM requires transformation of the problem to standard normal space, where 
all random variables are normally distributed, with zero means and unitary standard deviations. This 
transformation is non-linear for correlated random variables, and for highly non-Gaussian probability 
distributions [43]. Within the standard normal space, an iterative procedure is employed to find the point of 
maximum likelihood among those over the limit state equation, 𝑔(𝒙) = 0, usually known as the most probable 
failure point (MPP). The limit state equation is linearized at this point, and, as the reliability index corresponds 
to the distance between the MPP and the origin of the standard normal space, the failure probability is computed 
using Eq. (3). The search for the MPP is often performed by means of specialized algorithms, such as the 
improved HLRF method [10], and using convergence criteria based on the limit state value and on orthogonality. 
In this paper, FORM solutions are obtained using the limit state value and orthogonality convergence criteria, 
both with a tolerance of 10−8. The iterative procedure, as well as the check for convergence, depends on the 
computation of limit state function gradients. Thus, FORM is not indicated for problems where the linearization 
leads to large errors, and it may be difficult to apply in cases where the computation of gradients is challenging. 

2.2 Fracture mechanics 
 
Metallic structures under cyclic loading are subject to the development and propagation of cracks, a 
phenomenon known as fatigue, which may lead to catastrophic structural failures [44-45]. Nonmetals are not 
immune to fatigue as well, as stated by Anderson [46]. 

In structural reliability problems involving crack propagation, as in many other time-dependent reliability 
problems, large uncertainties are present. Uncertainty and uncertain variables may be found at different stages 
of a structure’s life: at initial time (t0), at the propagation phase, and at the final time, or design life (tD). 
Stochastic processes are usually present in the propagation phase; this can be the case in fracture mechanics, as 
shown by Beck and Melchers [47].  

At the initial time, one or more crack geometry parameters may be considered uncertain, and represented by 
random variables, functions of random variables, random fields or other mathematical models. The initial crack 
depth, a0, for example, is often taken as an important random variable. Even before cyclic loading starts, the 
probability distributions describing initial crack size may change, due to the application of inspections and/or 
interventions. These changes could also take into account uncertainties related to the inspections and 
interventions, by means, for example, of probability of detection curves and uncertainties in measurements [48-
51]. One type of intervention, with potentially significant impact in the probability distributions of initial crack 
depth, is the application of acceptance criteria, followed by possible replacements or repair of major flaws. Use 
of an acceptance criterion on initial flaw size is a way to control the reliability of the structural system or 
component, so that it achieves pre-specified reliability levels. 

Without loss of generality, and in benefit of explanation clarity, let us consider the initial crack depth, with 
probability density function 𝑓௔బ

(𝑎଴), as the only random variable, at initial time. With focus on the initial crack 
depth, a simple acceptance criterion, based on an acceptable initial crack depth, aac, is considered. The structure 
or component is rejected and replaced, in case 𝑎଴ ≥ 𝑎௔௖, and accepted otherwise. The acceptance criterion has 
the effect of truncating the probability density 𝑓௔బ

(𝑎଴), leading to a conditional distribution of 𝑎଴ given 𝑎௔௖, 
𝑓௔బ|௔ೌ೎

(𝑎଴). 
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The scenario where no acceptance criteria are applied is investigated first. In this case, the initial crack has a 
probability distribution described by 𝑓௔బ

(𝑎଴), and the structure is submitted to a high number of load cycles, 
along its lifetime, giving rise to the propagation phase. 

In the propagation phase, crack depth is driven by stochastic load processes, and depends on crack growth 
parameters, which can be described as random variables or stochastic processes [47]. Significant uncertainty is 
added to the problem at the propagation phase, which encompasses the lifespan of the structure; hence, crack 
depth 𝑎, is represented as a stochastic process of time, 𝑎(𝑡), or as function of the discrete number of load cycles 
𝑎(𝑁). Again, note that more complex descriptions of crack growth over time could be used.  

The crack growth process may be described by different models [46, 50-52]. Among them, the Paris’ law [46, 
52-53] has found many applications in the literature, and is adopted herein: 

ௗ௔

ௗே
= 𝐶∆𝐾௠, (5) 

where 
ௗ௔

ௗே
 is the differential crack growth per cycle, ∆𝐾 is the range of stress-intensity factor within the cycle, 

and C and 𝑚 are material constants that are determined experimentally. A fatigue threshold, ∆𝐾௧௛ , may be 
considered, so that for ∆𝐾 < ∆𝐾௧௛ no growth occurs, as observed experimentally [46]. 

The crack depth for a given number of loading cycles, 𝑁, which corresponds to a given time 𝑡, is obtained by 
integrating Paris’ law over the number of cycles or over the time interval [t0, t]:  

𝑎(𝑁) = 𝑎଴ + ∫ 𝐶∆𝐾௠𝑑𝑁
ே

ଵ
; (6a) 

𝑎(𝑡) = 𝑎଴ + ∫ 𝐶∆𝐾௠ ௗே

ௗ௧
𝑑𝑡

௧

௧బ
. (6b) 

Stress-intensity factors, K, may be determined by means of numerical methods, such as the finite element 
method. Results obtained via numerical models are directly used in lifecycle analyses, summarized in tables or 
employed in the construction of approximations [54-56], such as those based on polynomial functions, which 
are later employed in the analyses. Computation of maximum and minimum values of K over a load cycle allows 
determination of the respective range ΔK. The range, ΔK, is usually written as a function of crack depth, in the 
form: 

∆𝐾(𝑎) = 𝑌(𝑎)∆𝜎ට
ഏೌ

ೂ
, (7) 

where ∆𝜎  is the stress range over the cycle and 𝑌( )  is the geometry factor. The empirical expressions 
commonly used for 𝑄 for nearly semi-elliptical surface cracks in pipes are [57]: 

𝑄 = ቊ
1 + 1.464(𝑎 𝑐⁄ )ଵ.଺ହ, 𝑓𝑜𝑟 𝑎 𝑐⁄ ≤ 1

1 + 1.464(𝑐 𝑎⁄ )ଵ.଺ହ, 𝑓𝑜𝑟 𝑎 𝑐⁄ > 1
, (8) 

Considering Eq. (7), and noting that the integral in Eq. (6) involve a discrete number of terms (cycles), Eq. (6) 
may be rewritten as: 

𝑎(𝑁) = 𝑎଴ + ∑ 𝐶 ൬𝑌(𝑎௜ିଵ)∆𝜎௜ට
గ௔೔షభ

ொ
൰

௠
ே
௜ୀଵ , (9) 

where it is highlighted that Δσ may vary from cycle to cycle (for instance, following a time series), and that 
each value ai depends on the previous value, ai−1. The crack depth at the end of the lifetime, 𝑎௙, is assessed by 
evaluating Eq. (9) for the total number of load cycles, 𝑁஽, corresponding to the end of a design life, 𝑡஽. 

Note that uncertainties related to the initial crack depth propagate during the lifetime, and are affected by the 
uncertainties related to crack growth and to the load effects, here represented by ΔK. All these uncertainties 
contribute to the uncertainties of final crack depth; hence, also contribute to the possibility of undesirable 
responses (failure).  
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When an initial or fabrication acceptance criterion is employed, inspection and rejection of large flaws truncate 
the probability distribution of initial crack depths, with direct impact in the probability distributions at the final 
time. The initial and final crack depths have distributions given by 𝑓௔బ

(𝑎଴) and 𝑓௔೑
൫𝑎௙൯, respectively, if no 

acceptance criteria are applied. Upon application of the previously described criterion, they become 
conditionally distributed, with PDFs  𝑓௔బ|௔ೌ೎

(𝑎଴) and 𝑓௔೑|௔ೌ೎
൫𝑎௙൯, respectively.  

At any instant along the lifetime of the structure, with acceptance criteria applied or not, reliability analysis may 
be performed by considering one or more limit state functions, and using appropriate time-dependent reliability 
procedures, to determine if the structure achieves/maintains desired reliability levels. In many problems, 
inspections and interventions may be applied several times along the lifespan, to help achieving the required 
reliability levels. 

If undetected, a fatigue crack may propagate until it reaches a critical crack size, that is, a crack size that 
produces a stress intensity factor that exceeds the limiting value for stable propagation. At this stage, crack 
propagation becomes unstable and final rupture occurs. The limit state function can be written in terms of a 
critical crack size, 𝑎௖௥, which is related to the critical value of the stress intensity factor, 𝐾(𝑎௖௥) = 𝐾௖௥, which 
leads to unstable growth and rupture:  

𝑔௡(𝑿) = 𝑅൫𝑿௙௥௔௖൯ − 𝑆(𝑿௣௥௢௣) 

       = 𝑎௖௥ − 𝑎௡(𝑎଴, 𝒂௜ , 𝐶, 𝑚, ∆𝜎). 
(10) 

In Eq. (10), sub-index ()௡ is the accumulated cycle counter, which denotes the problem’s time-dependency; 
𝑅( ) is a resistance (strength) function; 𝑆( ) is a load effect function. In order to describe the proposed hybrid 
method, it is convenient to decompose the random variable vector 𝑿 as follows: 𝑿 = {𝑿௣௥௢௣, 𝑿௙௥௔௖}; where the 
crack propagation variables are grouped in 𝑿௣௥௢௣ = {𝑎଴, 𝒂௜ , 𝐶, 𝑚, ∆𝜎, … }, where 𝒂௜, (𝑖 = 1, … , 𝑛) represents 
the vector of random crack depths obtained over the lifetime; and the final strength variables are grouped in 
𝑿௙௥௔௖ = {𝑎௖௥, 𝐾௖௥, 𝜎௬, … }. Note that the first line in Eq. (10) targets the general case, where the strength function 
𝑅( ) can be, for instance, an elastic-plastic Failure Assessment Diagram [46]. The second line states the more 
simple case considered herein, for demonstration purposes, where strength is given simply by 𝑎௖௥  (elastic 
fracture). In the general case, Eq. (10) can be evaluated for any number of cycles 𝑛, up to desing live 𝑁஽. In this 
paper, a minimum reliability level is imposed at the end of design live; hence, Eq. (10) is evaluated only for 
𝑛 = 𝑁஽. 

 

2.3 Inverse reliability problem 
 
When a structure or component is subject to stochastic processes along its lifespan, it may be necessary to verify, 
at the fabrication stage, if the structure or component can achieve the proposed design life, with a specified 
reliability level. It may be required, for instance, that the reliability index at the end of lifetime, β(tD), must be 
greater than a specified target, βT. 

In case of metal structures or components subject to cyclic loading, and which are produced by welding, it is 
often assumed that welding introduces small flaws, which may grow to critical size during the lifetime. Some 
structures can be inspected and repaired over time, in order to keep their reliability above required levels. This 
is not the case of subsea pipelines, or risers, responsible for carrying oil and gas extracted from sea bottom 
wells, up to the floating units on the ocean surface. These structures are very difficult to inspect and repair after 
launched and installed, and they are subject to significant dynamic action and cyclic loads, over long service 
lives. Hence, in addition to using good quality materials and welding methods, it is fundamental to inspect 100% 
of welds, and to remove/repair those flaws which could become critical during design life.     

This gives rise to an inverse time-variant reliability problem, where parameters of the acceptance criteria must 
be defined in such a way that the structure or component satisfies the required reliability level along their 
lifetimes. Employing the previously defined acceptance criterion based on initial crack depth, the inverse 
problem may be written as: 
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𝐹𝑖𝑛𝑑: 𝑎௔௖ 

𝑤ℎ𝑖𝑐ℎ 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠: −𝑎௔௖ 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝛽(𝑎௔௖ , 𝑡஽ , 𝑿) ≥ 𝛽் . 

(11) 

The minimization of −𝑎௔௖, or maximization of 𝑎௔௖, has the objective of generating the least number of rejections 
or repairs, which have obvious costs. In the launching of rigid subsea risers, which are welded onboard a 
launching vessel, repairing a defect has significant impact in rental costs. Hence, it is of interest to maximize 
the acceptable flaw depth value, 𝑎௔௖, but respecting the target reliability constraint.  

In principle, solution to the optimization problem in Eq. (10) could be obtained by any numerical method for 
constrained optimum design, as those described in Arora [58] and other text books. A double-loop FORM 
approach could be employed, where the outer loop searches for the optimal value of aac, while the inner loop is 
responsible for computing the reliability index, for a given aac. The objective function is a very simple linear 
function, for which convergence can be achieved in as few as a single iteration, depending on the optimization 
method and on the characteristics of the constraint. The problem could also be solved by means of single-loop 
approaches, such as the Reliability Index Approach (RIA) or the Performance Measure Approach (PMA) [5, 
59], specially developed to solve RBDO problems. However, as previously discussed, high dimensionality, 
highly non-Gaussian probability distributions, unstable gradients, among other issues, make difficult the 
application of methods such a FORM, RIA and PMA, to this kind of problem. This has driven development of 
the hybrid approach described in the next section. 

 
3. PROPOSED HYBRID MCS-FORM APPROACH 
 
The proposed approach targets determination of parameters related to acceptance criteria of initial flaws in 
structures. More specifically, the approach as presented herein addresses the acceptable initial crack depth so 
that the structure achieves a target reliability index at the end of the design life. However, it can be extended 
to many problems with similar characteristics, as also discussed herein. The proposed approach explores and 
combines advantages of Monte Carlo Simulation (MCS), with the First Order Reliability Method (FORM), 
with a simple root search among simulated samples. A diagram scheme of the proposed hybrid approach is 
presented in Figure 1.  

Simulation is employed to deal with the stochastic crack propagation part of the problem: this simplifies 
consideration of large numbers of stochastic variables, complex non-linear crack propagation models, including 
load sequence effects, inspections and interventions at any time along the lifespan, and allows taking into 
account probability of detection curves and uncertainties in measurements. An efficient scheme for selecting 
the samples to be simulated is also proposed. The scheme may significantly reduce computational costs related 
to the solution of problems with small failure probabilities, a common scenario for real-world structural 
problems. The scheme has some resemblance with the Failure Sampling method proposed by Eamon and 
Charumas [60]. 

FORM is employed to handle the random variables relevant to the end of lifespan fracture problem. In this 
paper, only the critical crack size acr is considered as a resistance variable in the limit state function, as stated 
in Eq. (10). However, if one where to consider elastic-plastic fracture, critical stress intensity factor and yield 
stress would be relevant variables here. Considering FORM for these variables accelerates evaluation of 
conditional failures probabilities. In this stage, FORM may also be replaced by other reliability methods, even 
MCS, if the degree of limit state nonlinearity so requires. Finally, a root-finding strategy is proposed, so that 
the optimization problem is solved by using only the already performed simulations. This means that a single 
reliability analysis is sufficient to determine all the parameters of the acceptance criterion. 

Overall, the approach consists of two steps (see Figure 1): 1) reliability analysis: where the failure probability 
is computed by using selected simulations and FORM; 2) solution of the inverse reliability problem: where the 
acceptance criteria parameters are determined. These steps are described in detail in the following subsections. 
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Fig. 1 – Proposed hybrid algorithm combining MCS, FORM and root finding amongst single MC sample. 
 

3.1 Computation of the failure probability 
 
To better understand the proposed approach, the probability of failure given in Eq. (2) is rewritten in terms of 
the initial crack depth, a0: 

𝑃௙ = ∫ 𝑃௙|௔బ
𝑓௔బ

(𝑎଴)
ାஶ

ିஶ
𝑑𝑎, (12) 

where 𝑃௙|௔బ
 is the failure probability conditional on the occurrence of a given value of a0.  

Note that, for small enough values of a0, the conditional failure probability vanishes, or is small enough to 
be neglected. In this case, the crack does not grow enough to significantly contribute to failure probabilities. 
However, as a0 increases, the corresponding 𝑃௙|௔బ

 also increases, resulting in non-null, non-negligible, failure 
probabilities. Finally, for a0 large enough, the conditional failure probability approaches 100%. Therefore, 
conditional failure probability 𝑃௙|௔బ

 may be classified in three distinct regions, as illustrated in Figure 2: (1) 
region of negligible failure probabilities; (2) region of increasing failure probabilities; (3) region of very high, 
close to 100%, failure probabilities. 

The contribution of region (1) to the overall failure probability is negligible, while in region (3) the probability 
content of a0 is usually small, because a0 has a low probability of being in this region. Thus, solution by MCS 
essentially requires simulations to determine where region (2) begins and where it ends, as well as to 
characterize the conditional failure probability within region (2). 

Let us consider again a Monte Carlo population xi, with i=1, 2, …,nMC, comprised of samples randomly 
generated according to the joint PDF 𝑓𝑿(𝒙) and including sampled values of a0. For the ith simulation, the 
failure probability conditional on the occurrence of a0i may be determined by: 1) propagating the crack from its 
initial depth, a0i, until its final depth, afi, at the end of the lifetime; 2) computing the failure probability at the 
final time, conditional to afi. To simplify the notation, the failure probability conditional on the ith simulation is 
represented by: 
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𝑃௙௜ = 𝑃௙|௔బ೔
= 𝑃௙|௔೑೔

= 𝑃 ቂቄ𝑔 ቀ𝑿௙௥௔௖ , 𝑎௙௜൫𝒙௜
௣௥௢௣

൯ቁ ≤ 0ቅቃ. (13) 

In Eq. (12), the vector of sample realizations 𝒙௜
௣௥௢௣ denotes those variables which are handled by MCS, in the 

proposed hybrid approach. Usually, these are the variables that affect the crack propagation phase, i.e., 𝒙௜
௣௥௢௣

=

{𝑎଴௜ , 𝐶௜, 𝑚௜, ∆𝜎௜}, which is the strongly non-linear part of the problem. The probability evaluation in Eq. (13) 
actually refers to the end-of-life fracture problem; hence, it also refers to the failure criteria, which can be more 
elaborate than Eq. (10). For instance, the R6 elastic-plastic fracture criteria [46] could be incorporated here. In 
the proposed hybrid approach, FORM is used for computing the probability in Eq. (13), by default, due to its 
efficiency. The simple limit state function in Eq. (10) is linear in random variables 𝑎௖௥ and 𝑎௡൫𝒙௜

௣௥௢௣
൯; hence, 

the FORM solution will often be accurate enough.  

Assuming the MC simulations to be statistically independent, each sample has an associated probability of 
occurrence of 1/nMC, and the Monte Carlo estimate for the failure probability is given by: 

𝑃෠௙ =
ଵ

௡ಾ಴
∑ 𝑃௙௜

௡ಾ಴
௜ୀଵ . (14) 

For structural engineering applications, Pf is usually very small, and many of the 𝑃௙௜ involved in the summation 
are negligible. This means that not all simulations need to be performed. As long as the negligible terms 𝑃௙௜ are 
somehow identified, their respective simulations can be avoided. To do so, the samples of a0 may be put in 
descending order, as illustrated in Figure 3, in such a way that a01 corresponds to the sample with the largest 
initial crack depth. Simulations may be performed starting from a01 and stopping at a0k when the first conditional 
failure probability results null (see Figure 3).   

The approach requires sorting of the samples at the initial time, in order to avoid unnecessary simulations. 
However, note that even if more parameters were used to describe the flaw, the samples could still be sorted. 
One possibility is by evaluating the limit state function, considering the flaws defined by the initial samples, 
and sorting the samples in ascending order, according to their respective limit state values. Samples with lower 
values of the limit state function at the initial time are those most probably leading to failures at the final time. 
Again, simulations would be performed only until the kth sample is achieved, for which the conditional failure 
probability results negligible. The limit state based sorting is efficient in cases where accurate enough, but not 
too computationally demanding, limit state functions are available. This includes many practical applications 
of Failure Assessment Diagrams (for example, see [46]). Also, simplified versions of the limit state function 
could also be used for this task, which expands the applicability of the approach. 

After sorting the samples, only k simulations are necessary to compute the Pf. Thus, Eq. (14) becomes: 

𝑃෠௙ =
ଵ

௡ಾ಴
∑ 𝑃௙௜

௞
௜ୀଵ . (15) 

However, due to the stochastic nature of the crack propagation phenomena, given two initial cracks, the initially 
smaller crack could grow faster, overtaking the initially larger crack. As a result, different values of a0 may lead 
to similar values of the conditional failure probability. This is illustrated by the horizontal line in Figure 4, where 
for a0i and a0j, Pfi may result close or equal to Pfj. To circumvent this, simulations must be carried out not only 
until the first conditional failure probability results small enough, which happens for a0m in Figure 4, but until 
the changes on the estimated failure probability are small enough, over the last nstall simulations. A tolerance on 
Pf change, tolPf, is considered. The more distant the points a0i and a0j are, which may lead to similar conditional 
probabilities, the higher the nstall required to ensure that convergence is achieved. This convergence criterion is 
still directly applicable when the flaw is described by more than one parameter. After convergence, Pf may be 
estimated by Eq. (15). 
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Fig. 2 – Classification of conditional failure probabilities, 𝑃௙|௔బ
, in terms of a0. 

. 
 

 
 

Fig. 3 – Conditional failure probabilities and samples of a0 in descending order. 
 

 
 

Fig. 4 – Similar conditional failure probabilities for different values of a0. 
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3.2 Determination of acceptance criterion parameters 
 
The second and last step of the proposed approach relates to finding the parameters of the acceptance criterion, 
so that at the end of the design life, the structure presents a reliability index, β, equal to or larger than the target, 
βT, or, in terms of failure probabilities, 𝑃௙ ≤ 𝑃௙். For the simple problem taken as an example, this corresponds 
to finding the largest value of aac for which the structure or component satisfies the reliability constraint.  

Consider that a sufficient number of MCS samples are drawn, and that 𝑃෠௙ is calculated following Eq. (15). 

If 𝑃෠௙ ≤ 𝑃௙் , no acceptance criterion would be necessary: safety of the structure already complies with 

requirements, any inspections or interventions would lead to unnecessary costs. On the other hand, if 𝑃෠௙ > 𝑃௙், 
the acceptance criterion must be determined and applied.  

One efficient way to determine parameters of the acceptance criterion is by using the previously performed 
simulations. The rejection of an actual flaw, which is greater than aac, is equivalent to rejecting the 
corresponding MC sample, which also changes the evaluated failure probability. Smaller values of aac lead to 
greater number of rejected samples and larger fabrication costs, but also leads to smaller failure probabilities. 

As previously stated, each sample has a probability of occurrence, Po, of 1/nMC. If a sample is rejected (as 
the actual flaw would), its probability is redistributed to the other MCS samples. Hence, after one rejection, the 
probability of occurrence of the remaining samples given the rejection, Po|R, becomes: 

𝑃௢|ோ =
ଵ

௡ಾ಴
+

భ

೙ಾ಴

(௡ಾ಴ିଵ)
=

ଵ

(௡ಾ಴ିଵ)
. (16) 

In other words, the acceptance/rejection criterion has the effect of truncating the initial joint density 
distribution, which is equivalent to eliminating some samples of the Monte Carlo population. The Monte Carlo 
estimate of the failure probability after truncation is computed by using the remaining samples and their 
corresponding conditional failure probabilities. 

Note that repairs could also be considered in the proposed approach. In this case, instead of eliminating the 
sample, the rejected sample would be submitted to a repair procedure and give rise to a modified simulation 
with updated conditional probability, or to a number of simulations in case a probabilistic repair takes place. 

For the example based on only a0 and the respective aac, and disregarding repairs, the simulations give a 
discrete set of failure probability values Pfi over a0, with the samples sorted in descending order. Thus, for aac 
within the interval [a0j a0j+1[, the acceptance criterion has the effect of eliminating all simulations for which i ≤ 
j. The failure probability after truncation, 𝑃௙்ோ, is given as a function of j by: 

𝑃௙்ோ(𝑗) =
ଵ

൫ேೞೌ೘೛ି௝൯
∑ 𝑃௙௜

௞
௜ୀ௝ାଵ . (17) 

Solution of the inverse reliability problem is obtained by imposing 𝑃௙்ோ(𝑗) ≤ 𝑃௙் , that is, the failure 
probability after application of the acceptance criterion is smaller or equal to the target. However, the discrete 
description of the Pf provided by MCS only allows determining an interval for aac. 

This problem may be seen as a root-finding problem, which aims at finding the roots of the error given by: 

𝑒𝑟𝑟𝑜𝑟(𝑗) = 𝑃௙்ோ(𝑗) − 𝑃௙். (18) 

Among the many root-finding methods available in the literature [61], the bisection method is chosen herein 
to solve this problem. Assuming that the root is in the interval [a0p, a0q], for which PfTR(p)≥PfT and PfTR(q)≤PfT, 
the bisection method works by narrowing the interval until the solution is found with a specified tolerance. In 
the original version of the bisection method, the interval is updated by replacing either a0p or a0q by (a0p + a0q)/2. 
The version used herein converges a little faster by looking to the indexes of the samples, instead of their actual 
values. In each iteration, either p or q is updated by floor((p + q)/2), keeping PfTR(p)≥PfT and PfTR(q)≤PfT, where 
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the function floor(.) rounds its argument towards the closest smaller integer. In the problem at hand, the search 
stops when the interval [j, j+1] is found, for which error(j)≥0 and error(j+1)<0. The respective tolerance on the 
solution is directly related to the spacing between the samples. Figure 5 illustrates convergence of the method 
over six iterations. 

Finally, aac is obtained by linear interpolation in the last interval, considering the respective values of the 
truncated failure probability [PfTR(j), PfTR(j+1)] and the target failure probability. 

The initial interval can be taken as [a00, a0k], with a00 slightly above a01. Remembering that a01 corresponds 
to the sample with the largest initial crack depth, if aac=a00 no rejections occur and the failure probability remains 
the one given by Eq. (15). On the other hand, for aac = a0k, all simulated samples are rejected and the failure 
probability vanishes. For this initial interval, PfTR(p) = PfTR(0) = 𝑃෠௙ and PfTR(q) = PfTR(k) = 0,  so that the target 

failure probability is within the initial interval, i.e. 𝑃௙் ∈ ൣ0, 𝑃෠௙൧. 

When the acceptance criterion is based on more parameters, optimization algorithms may be necessary to 
determine the solution. Nevertheless, the procedure still uses the previous simulations and may be performed in 
an efficient way. 

 
 

Fig.5 – Illustration of the root-finding scheme via Bisection. 
 

 
4. NUMERICAL RESULTS 
 
Due to space limitations, numerical results will be presented at the conference and in the extended journal 
submission.  

 
5. CONCLUDING REMARKS 
 

Classical approaches to inverse reliability and reliability-based design optimization problems require 
evaluation of limit state gradients. This can be a problem when dealing with non-linear crack propagation 
problems involving millions of load cycles, hence millions of random variables. In this paper, a hybrid approach 
was proposed for solving this type of problems. The proposed hybrid approach explores and combines the best 
of Monte Carlo Simulation (MCS), FORM and the bisection method. The non-linear crack propagation phase 
of the problem is handled by MCS; the final fracture problem is handled by FORM; and the allowable crack 
size, required in order to impose a minimum lifetime reliability, is obtained by root-finding, among the set of 
initial crack size samples. Efficiency is achieved by classifying initial crack size samples, and computing only 
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those terms effectively contributing non-zero probabilities to the integral. Efficiency is also achieved by solving 
the optimization problem using the information acquired from a single Monte Carlo run. As shown in the 
manuscript, efficiency of the proposed Hybrid approach improves when target reliabilities are large, as expected 
in practical structural engineering applications. 
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