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ABSTRACT 

 

Computational Fluid Dynamics (CFD) defines a noteworthy methodology to carry out the numerical 

modeling of generic flow field problems, encompassing correlated phenomena like such as mass, momentum 

and heat transfer in any given geometry. Especially in gas dispersion context, such a tool presents a remarkable 

applicability, allowing one to perform, for example, risk assessment and consequence analysis in 

comprehensive analysis in areas as gas leakage and explosion scenarios risky in a comprehensive manner and 

consequence. Another computational technique which has gained attention in the past years is the Artificial 

Intelligence. An expressively widespread branch of the Artificial Intelligence paradigm consists of Machine 

Learning, a set of techniques of which essentially allows computer algorithms to learn from patterns in the 

data, successively improving the performance in predicting a given outcome. One of the most widely used 

types of algorithms is given by the Neural Network framework (NN), whose. The combination combined use 

of NN with CFD experiments has recently experienced a considerable growing growth recently in the literature 

academia and industry. The present work seeks to demonstrate the employment of such a coupled method in 

for representative problems in atmospheric dispersion representative problems. To do so, a limited set of CFD 

simulation results are used for developing neural networks by supervised trainings. The outcome are predictors 

for flow field interpolation purposes, the potential uses of which include digital twin designing, gas leakage 

detection optimization procedures etc. One possible way for addressing such coupling strategy, the “local 

approach” treats the network as a transition rule in the scope of Cellular Automata (CA), making it able to 

locally learn the dynamic behavior of the addressed physics. In this via, each nodal point is looked at in 

different time-steps; property values in the previous instant at the node and at its neighbors are taken, from 

which the respective fluxes are computed and serve as input to the network providing then the current node 

value. This method gives rise to simpler neural network architectures (fewer inputs and outputs) with closer 

computing relatively to the CFD calculation, but, as a downside, requires several runs of the model for each 

scenario in a transient fashion. Assessments have been done by predicting, first, a scalar field time evolution 

governed by a 1D advection-diffusion transport equation to verify the method implementation. Subsequently, 

species concentration distributions were sought in atmospheric dispersion cases in transient and stationary 

fashions modes for analyzing the capabilities regarded of the current approach’s current capability, as well as 

its limitations and potential to deal with the focused physics. 

1. INTRODUCTION 

 

CFD simulations have been playing a continuously more significative role in various industrial 

applications for flow field prediction and assessment. Gas dispersion and leakages constitute a prominent 

application to which such an assertion holds. Experimental measurements as well as oversimplified analytical 

descriptions cannot provide a detailed enough description of the addressed problems. Numerical modelling via 

CFD, on the other hand, is capable to provide sufficiently accurate predictions at engineering level, offer a 

framework that allow to compute approximations for real case gas dispersion scenarios. 

As a downside, the solutions returned by a CFD calculation derive from a physical domain 

discretization. Dense computational grids designed to represent large or complex geometries may impose some 

restrictions in the analysis to be performed due to CPU time limitations and processing capacity. With the 

growing diffusion of machine learning resources, like Artificial Neural Networks (ANN), several engineering 
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modellings bottlenecks have been addressed by formulating data-driven models, whose potential encompasses 

the construction of either hybrid strategies or concentrated parameters correlations (black-box approach).  

A combined treatment CFD-ANN can be structured in distinct ways, serving the same or different 

purposes. A possible goal in utilizing this method consists of predicting field variables by a surrogate data-

driven model after applying a computational learning technique employing the gathered CFD results. Hence, 

one may seek for interpolation or even extrapolation ends when building such a coupled approach. 

In order to compute distributed flow properties in a coupled CFD-ANN scope, two paths can be followed 

in terms of the architecture scale. Particularly, the target focused by the learning procedure distinguishes these 

paths. A global approach deals with the whole flow field domain, receiving discretization points and 

boundary/initial conditions directly as inputs. By processing these inputs through a typically complex deep 

learning architecture owing to high data dimensionality, distributions flow properties can be provided. An 

example of this path is given in the study carried by [1]. Conversely, a “local” framework looks at individual 

discretized elements (equivalent or not to the prescribed CFD mesh) –treated in fact as system’s unities –, in 

which local and instantaneous information are taken and processed to evaluate next instant variables’ local 

values.  

The regarded local modelling can be obtained in the context of Cellular Automata (CA). A scan looking 

at each computational cell (an automaton) take respective the tracked variables’ values corresponding to the 

current time-step and from its neighbors. By applying a transition rule, one updates the cell state to the next 

time-steps. A coupling between both CA and ANN techniques can be achieved by using the last as a transition 

rule [2].  

The present work aims to develop a surrogate model by structuring a data-driven strategy in the sense 

of CA-ANN coupling, sohence a “local” treatment, to perform interpolations or extrapolations once gas 

dispersions CFD simulation results datasets are provided 

2. DESCRIPTION 

Three cases with increasing level of complexity were selected in order to assess the methodology. First, 

an extremely simple reference problem was addressed to verify the general consistency of the concept and its 

implementation: a 1D transient advection-diffusion scalar equation. Next, the analysis focused on 2D gas 

dispersion scenarios, which are the focus of the present study. Specifically, a transient puff and cloud 

displacement in a free atmospheric dispersion defined the first 2D case, and a continuously feed steady state 

2D plume, the second one. 

For all cases, the local treatment succeeded following the schematic procedure illustrated in Fig. 1. That 

is, in a scan for each time-step, one accesses the variables determining the current state of a given 

computational node. To get the updated local state, a trained ANN processes the input data, which comprises 

neighbors current time states besides those of the scanned node. In the stationary case, a similar structure is 

considered. However, the desired steady state of every node results from a processing of local coordinates 

directly during the scan, as well as the case’s boundary condition varied throughout the training dataset. 

To perform the model building, codes were written in Python 3.8.11 using the Machine Learning 

package TensorFlow 2.6.0. 

 

 
Fig.1 – Local approach scheme.  

2.1 1D TRANSIENT ADVECTION-DIFFUSION SCALAR TRANSPORT EQUATION 
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The governing equation of the 1D scalar transport by advection and diffusion processes in the transient 

regime can be written as: 

∂φ

∂𝑡
+ 𝑐

∂φ

∂𝑥
+ 𝑑

∂2φ

∂𝑥2
= 0 (1) 

where φ denotes a generic scalar field, and c and d represent advective (as follows, a constant velocity 

distribution is imposed) and diffusive coefficients, respectively. 

 Tab. 1 summarizes the boundary and initial conditions, inputs, outputs and ANN architecture main 

hyperparameters. The problem consists of solving the time advancement of the referred scalar subjected to 

Dirichlet boundary conditions and starting from a null distribution. The 1D domain (disposed in x = [0,1] 

interval) was discretized in five-nodes only, with the purpose of verifying the implementation.  

Tab.1 – 1D problem specifications 

Boundary 

conditions 

𝛗(𝒕, 𝒙 = 𝟏) = 𝟎, 𝛗(𝟎, 𝒙) = 𝟎 

𝛗(𝒕, 𝒙 = 𝟎) = {1.5,2.0,2.5,3.0,0.5,3.5,4.0,4.5} 

Density and 

diffusivity 𝛒 =  𝟏, 𝚪 =  𝟎. 𝟏 

Features φ0,
∂φ0

∂𝑥
,
∂2φ0

∂𝑥2
, φ0,𝑤, φ0,𝑒  

Labels φ𝑐𝑢𝑟𝑟 

Hidden layers 3 (10-10-10) 

Normalization φ𝑛𝑜𝑟𝑚 =
φ − φ

σφ
 

Loss function 𝐿𝑜𝑔𝐶𝑜𝑠ℎ = 𝑙𝑜𝑔 (
𝑒𝑥𝑝(φ) + 𝑒𝑥𝑝(−φ)

2
) 

 

 As reported in Tab. 1, the initial distribution and right boundary are null. The dataset composition 

comes from varying the left boundary condition. 𝜑𝑐𝑢𝑟𝑟 and φ0 denote current and past time-step scalar values, 

respectively. φ   symbolizes the scalar mean and σφ, the scalar standard deviation. The presented derivatives 

were calculated in the Finite Volume Method (FVM) framework, using the cell neighbors’ values. 

 

The procedure provided in Fig. 2 depicts the steps needed for applying the combined strategy addressed. 

 
Fig.2 – Steps for succeeding with the coupled strategy. 

2.2 2D Puff and Cloud Displacement in Atmospheric Gas Dispersion  

The second scenario refers to a gas dispersion given by a short time release of methane (a puff) and its 

development as a cloud being carried by a forward pure air flow. The proposal here is to assess the model’s 

ability for handling a transient behavior related to the regarded physics. Tab. 2 provides the case specifications.  
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The second scenario refers to a gas dispersion given by a short time release of methane (a puff) and its 

development as a cloud being carried by a forward pure air flow. The proposal here is to assess the model’s 

ability for handling a transient behavior related to the regarded physics. Tab. 2 provides the case specifications.  

The problem setup starts from the generation of a dataset for ANN training by performing CFD 

simulations of a 3m x 2m rectangular domain, whose left edge, around its center, contains a 10cm methane 

(4% CH4 + air mixture) injection hole while air enters through its remaining extension at 3 m/s. Following [2], 

the similar case definition and boundary conditions were applied at top and bottom boundaries (symmetry) 

and at the right edge (pressure-outlet). Fig. 3 illustrates a schematic representation of the discretized 

computational domain created in ICEM CFD and simulated using the CFD solver Fluent, both for Ansys 

v2020R1 package. 

Simulations were run in order to assess the molar concentration distribution at different time-steps. The 

temporal lapse employed in the simulations does not need to be equal to the one used in the data-driven 

approach. The ANN, once satisfactorily trained, is expected to extract implicitly the time correlation amongst 

the dataset built by combining cells scan for different instants. In special, concentration distributions 

correspondent to the time interval of 15.6s to 19.2s were selected, divided in subintervals of 0.4s. Test dataset, 

not presented during the training epochs, represent 20% of all cells’ values, being used for prediction 

performance checking. A single time window, that is, considering only the last time-step for composing the 

network input, was design in this assessment. 

Tab.2 – 2D puff and cloud displacement specifications 

Boundary 

conditions 

Pure air inlet: 3 m/s (velocity inlet) 

Injection hole: 3 m/s and 4% of CH4 + air (velocity inlet) 

Top and bottom contours: symmetry 

Outlet: Pstatic = 0 Pa (pressure-outlet) 

Features 𝐶𝑖,0,
𝜕𝐶𝑖,0

𝜕𝑥
,
𝜕𝐶𝑖,0

𝜕𝑦
, 𝐶𝑖,0,𝑤, 𝐶𝑖,0,𝑒 , 𝐶𝑖,0,𝑠, 𝐶𝑖,0,𝑛  

Labels 𝐶𝑖
𝑐𝑢𝑟𝑟 

Hidden layers 4 (25-75-75-25) 

Normalization 𝜑𝑛𝑜𝑟𝑚 =
𝜑 − 𝜑

𝜎𝜑
 

Loss function 
𝑀𝐴𝐸 = ∑|φ𝑡𝑟𝑢𝑒 − φ𝑝𝑟𝑒𝑑|

𝑁

𝑖=0

 

 

  

2.3 2D Steady State Plume 

The third case investigated was given by a stationary plume developed through a free atmospheric 

dispersion in consequence of a continuous injection of a contaminant (methane). The simulated system 

consisted of a 5m x 2m rectangular domain, the discretization of which resulted in a 6300 quadrilateral cells 

computational grid. The imposed boundary conditions follow in Fig. 4 and comprises the methane admission 

through a 10cm hole placed around the left edge’s center and opening boundaries at top, bottom and right 

contours, the first two assigned with pressure inlet condition while the last was set with pressure outlet 

condition. 
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 Fig.3 – 2D puff and cloud displacement 3600 quadrilateral cells mesh and boundary conditions.

  

In Tab.3, specifications related to network settings as well as boundary conditions are given. It is worthy 

to stress the fact that the database building for train and test occurred by considering different flow rates in the 

simulations runs for the methane leakage, specifically in the velocities range indicated for the inlet contour.  

In contrast with the transient cases previously described, an explicit geometry dependency takes place 

when using the regarded approach in a stationary fashion. The local scan that follows accesses each cell’s X 

and Y coordinates values. The ANN developed transition rule is expected not to return a proper state update 

in a time advancement sense, but the corresponding local distributions of properties relevant to the concerned 

physics (velocities and concentrations), which complete the uniquely addressed steady state. Besides spatial 

location, the cells evaluated at different conditions receive the respective inlet velocity as an input to 

particularize their associated field.  

It is important to note that the specific geometric inputs were formulated in terms of distances to the 

boundaries. Proceeding this way, one expects to alleviate the direct spatial discretization dependency since the 

network may learn to identify how the different boundary condition influences a given region of the domain 

as a function of proximity. 

 
Fig.4 – 2D steady state plume computational grid.  

Tab.4 – 2D steady state plume specifications. 

Boundary 

conditions 

Injection hole: {0.1, 0.2, …, 0.9} (velocity inlet) 

Top and bottom contours: Ptotal = 0 Pa (pressure inlet) 

Outlet: Pstatic = 0 Pa (pressure-outlet) 

Features 𝐷𝑙𝑒𝑓𝑡, 𝐷𝑟𝑖𝑔ℎ𝑡, 𝐷𝑡𝑜𝑝, 𝐷𝑏𝑜𝑡𝑡𝑜𝑚, 𝑉𝑖𝑛 

Labels 𝐶𝑖
𝑆𝑆, 𝑉𝑥,𝑖, 𝑉𝑦,𝑖 
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Hidden layers 7 (75-75-75-75-75-75-75) 

Normalization 𝜑𝑛𝑜𝑟𝑚 =
𝜑 − 𝜑

𝜎𝜑
 

Loss function 
𝑀𝐴𝐸 = ∑|φ𝑡𝑟𝑢𝑒 − φ𝑝𝑟𝑒𝑑|

𝑁

𝑖=0

 

 

 

2.4 2D Transient Jet 

The fourth case considered was the transient analogous of the previous one, then featuring a plume in 

development as an outcome of a continuous injection of a contaminant (methane). It resembles a transient jet. 

The same conditions remained in the current scenario with respect to computational domain shape and 

discretization, as well numerical simulations settings. The exception is that its run occurred in the transient 

regime. 

It is noteworthy to mention an important difference concerning the database building. For the sake of 

exploration of the methodology’s extension, the dataset included a single contaminant injection velocity 

(specifically, 0.6 m/s). The addressed data variability referred to the local molar concentration field time at 

different timesteps. The resulted ANN featured a similar architecture as described in Tab.4 with regards to 

hyperparameters. A distinction took place for input and output variables. Tab.5 summarizes the model’s setup. 

 

Tab.5 – 2D transient jet specifications. 

Boundary 

conditions 

Injection hole: 0.6 (velocity inlet) 

Top and bottom contours: Ptotal = 0 Pa (pressure inlet) 

Outlet: Pstatic = 0 Pa (pressure-outlet) 

Features 𝐶𝑖,0,𝑤, 𝐶𝑖,0,𝑒 , 𝐶𝑖,0,𝑠, 𝐶𝑖,0,𝑛, 𝐶𝑖,0, 𝐶𝑖,1, 𝐶𝑖,2, 𝐶𝑖,3 

Labels 𝐶𝑖
𝑡(First architecture) and {𝐶𝑖

𝑡, 𝐶𝑖
𝑡+1} (Second architecture) 

Hidden layers 5 (30-30-30-30-30) 

Normalization 𝜑𝑛𝑜𝑟𝑚 =
𝜑 − 𝜑𝑚𝑖𝑛

𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛
 

Loss function 
𝑀𝐴𝐸 = ∑|φ𝑡𝑟𝑢𝑒 − φ𝑝𝑟𝑒𝑑|

𝑁

𝑖=0

 

 

 

After a brief exploratory analysis, a 4 time-step window was taken, which means that local 

concentrations related to the 4 previous time-step defined the model’s features. Besides the proper cell’s state, 

concentrations of the neighboring cells at left, right, up and down directions for the immediate previous instant 

also formed the input variables set. Two architectures were assessed: one predicting the current local field state 

and other returning also the first future time-step state.  
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The dataset was organized into cell states corresponding to concentration field taken at 5 time-step sets, 

the first four combined to provide through the network the predicted current states. Train and test subsets 

resulted from a partition between these groups. 

2.5 2D Steady State Upward Wind 

The fifth case consisted of a stationary flow field developed in a contaminant gas dispersion resulted 

from a forward leak subjected to an upward constant velocity wind. The computational domain and its 

discretization follow in Fig.5, as well the boundary condition’s locations, whose specifications is summarized 

in Tab.6 along with neural network’s hyperparameters and variables.  

It is valid to stress details concerning to database building. Differently to the procedure applied in the 

previous steady case, the coordinates X and Y were cut off as input features during cells scan performed in the 

regarded approach. Poor results have taken place in the first trials, a fact that motivates changing the input 

variables in analogy to the transient cases, i.e., a concentration field associated to a prescribed condition whose 

expected role is to be a kind of initialization.  

To do so, distinct pairs of conditions composed the dataset, being differentiated by inlet velocities 

assigned to contaminant leakage and the wind. Variations in these parameters should produce the same sought 

steady state field independently of the fed field. It is like the transient framework, in which database elements 

are discriminated in terms of the correspondent instant, but the dependence with the input field is expected to 

be mitigated by randomizing the conditions. For example, the same input field giving different results by 

changing only the variations in inlet velocities. 

 
Fig.5 – 2D steady upward wind 7425 quadrilateral cells computational grid. 

Tab.6 – 2D upward wind case specifications. 

Boundary 

conditions 

Injection hole: {0.25, 0.5, 1.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0} m/s (velocity inlet) 

Left, top and right contours: Pstatic = 0 Pa (pressure outlet) 

Bottom: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} m/s (velocity-inlet) 

Features 𝐶𝑖,𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 , ∆𝑉𝑙𝑒𝑎𝑘
𝑖𝑛 , ∆𝑉𝑤𝑖𝑛𝑑

𝑖𝑛  

Labels 𝐶𝑖
𝑡(First architecture) and {𝐶𝑖

𝑡, 𝐶𝑖
𝑡+1} (Second architecture) 

Hidden layers 3 (20-20-20) 

Normalization 𝜑𝑛𝑜𝑟𝑚 =
𝜑 − 𝜑𝑚𝑖𝑛

𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛
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Loss function 
𝑀𝐴𝐸 = ∑|φ𝑡𝑟𝑢𝑒 − φ𝑝𝑟𝑒𝑑|

𝑁

𝑖=0

 

 

 

3. RESULTS AND DISCUSSION 

In this section, the considered study cases allowed to assess the performance of the coupled CFD-ANN 

local strategy treated. 

3.1 1D Transient Advection-Diffusion Scalar Transport Equation 

Training results for the generated neural network follow in Fig.5. One may observe that the fitting 

procedure led to a very good representativity of the data distribution, which can be observed through the very. 

Moreover, a comparison plot between the true scalar values and model predictions indicates that the current 

network architecture has a good predictive capacity, since a test subset containing 20% of the raw dataset has 

never been used during the learning process. 

In order to ensure the trained data-driven model’s ability to accurately produce scalar distributions and 

its time evolution by means of a local framework (i.e., performing a scan through individual nodes), an 

interpolation scenario was investigated. Specifically, the field time advancement related to a left boundary 

condition of φ(x=0,t)=2.3 (not included in original dataset) was taken. Fig.6 provides a plot comparing the 

FVM solutions and NN predictions at different time-steps. 

 

                   
Fig.6 – 1D transient advection-diffusion case training reports: (left) mean squared error evolution during 

training – validation subset error considered for early stopping technique use; (right) observations versus 

predictions in test dataset. 

 

+20% 

-20% 
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Fig.7 – 1D transient advection-diffusion scalar field time evolution: comparison of FVM and ANN results 

for different time-steps up to steady-state. 

The matching plots illustrated in Fig.6 constitutes an important indicative of the consistency of the 

methodology. The model seemed to have a learning capacity to address the physical phenomena investigated 

(advection and diffusion). Following the initial investigation with a simple 1D problem, it is important to assess 

multi-dimensional cases and how different boundary conditions and presence of eventual mass sources 

influence the results, which will be presented in the following sections. 

3.2 2D Puff and Cloud Displacement in Atmospheric Gas Dispersion  

The ANN training for the puff and cloud displacement study case also showed a satisfactorily 

performance. As depicted in Fig7, low levels of the “Mean Squared Error” (MSE) were reached. The 

expressive agreement for predictions of the test subset revealed that the adjusted data-driven model presents, 

again, an acceptable predictive capacity.   

 

                  
Fig.8 – 2D puff and cloud displacement case training reports: (left) mean squared error evolution during 

training – validation subset error considered for early stopping technique use; (right) observations versus 

predictions in test dataset. 

 The ANN structure is based on the local approach. That is, the inference returned by such a model acts 

recursively on the domain discretization cells. In this context, it is imperative to verify capacity of the network 

to represent cells connectivity, capturing a consistent and accurate concentration field time evolution. Hence, 

the prediction of molar concentration of methane correspondent to one time-step was addressed in what 

follows. In particular, the comparison took the one time-step transition between instants 15.6s and 16s. 

In Fig.9, the cloud position associated to the initial time considered is provided. It follows in Fig.10 

representations of the resulted distribution after the time transition generated by the constructed data-driven 

model and related to the CFD simulation results dataset. 

 

 
Fig.9 – 2D puff and cloud displacement case molar concentration field for the instant of 15.6s. 

+20
% 

-20% 
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Fig.10 – 2D puff and cloud displacement case molar concentration field for the instant of 16s: (left) 

reference CFD data; (right) ANN prediction. 

One may note that a considerable agreement resulted from the comparison accomplished. Although 

promoting the cells state update in a recursive fashion, taking each one at once, a coherent total distribution 

could be obtained. Nevertheless, a single time-step window established in the training step limited the network 

in extracting the time correlation between inputs and outputs for an arbitrary time advancement to be 

reproduced.  

[3] has identified two distinct inference modes for an ANN designed for transient flow field predictions: 

cascading and non-cascading. Ideally, the aim of such a coupled approach is to start from an initial field and 

return its time evolution, feeding the network with previous time-steps solutions to compute the current time 

one: the cascade mode. Though prediction errors tend to accumulate, this could produce deprecated solutions 

after fewer time-steps. Thus, it is still a challenge passing from individual time-steps predictions by a data-

driven surrogate model to a full-time evolution framework trained with CFD simulations. 

3.3 2D Steady State Plume 

Two ANNs were built in the 2D stationary plume formation with the architecture specifications listed 

in Tab.4. One has as its target the molar concentration field while the other predicts the two components of 

velocity distribution. The training performance for these networks follow in Fig.10 and Fig.11, being given in 

terms of accuracy evolution for train and validation subsets and comparison between predicted and true values 

for the test subset. 

A similar behavior could be observed as that described in the previous study case. An oscillatory profile 

in the ANN error is observed during the parameter adjustment procedure. However, sufficiently small losses 

were reached in a couple of epochs, indicating the achievement of a reasonable fitting. Furthermore, the 

comparison involving observations in the test subset and their respective model predictions showed an 

acceptable predictive capacity. These appointments are valid for both networks training assessments, although 

the oscillatory pattern was significantly more pronounced in the inference of velocity components. 

 

 

 

Fig.11 – 2D steady state plume case training reports for prediction of molar concentration: (left) mean 

squared error evolution during training – validation subset error considered for early stopping technique 

use; (right) observations versus predictions in test dataset. 

-20% 

+20% 
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Fig.12 – 2D steady state plume case training reports for prediction of velocity field components: (left) mean 

squared error evolution during training – validation subset error considered for early stopping technique 

use; (middle) observation versus predictions in test subset for x axis velocity component; (right) observations 

versus predictions in test subset for y axis velocity component. 

Analogously to other cases analyzed, it is fundamental to verify the reconstruction of the target fields 

with the obtained model. Fig.12, Fig.13 and Fig.14 depict predictions corresponding to an extrapolation 

scenario. The train and test dataset encompasses steady flow fields for different inlet velocities to the methane 

leakage in the range starting in 0.1m/s up to 0.9m/s, as one may see in Tab.4. These plots refer to a methane 

admission at 1.0m/s.  

It must be emphasized that the agreement provided by the coupled CFD-ANN approach for this study 

case constitute an important indication of the local treatment potential. Originally designed to transient 

calculations as proposed in [2], the same framework seems to be applicable in a stationary fashion, by changing 

consistently the input variables. An explicit geometric dependency take place, which could be softened by 

expressing it in terms of distances to boundaries, as well as a direct imposition of the main conditions defining 

the diverse scenarios, i.e., the entrance flow rate (or inlet velocity) information. 

 

  
Fig.13 – 2D steady state plume case molar concentration field prediction for: (left) reference CFD data; 

(right) ANN prediction. 

+20
% 

-20% 

+20% 

-20% 
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Fig.14 – 2D steady state plume case x axis velocity component field prediction for: (left) reference CFD 

data; (right) ANN prediction. 

 
 

Fig.15 – 2D steady state plume case y axis velocity component field prediction for: (left) reference CFD 

data; (right) ANN prediction. 

3.4 Transient Jet 

Two architectures were built in the 2D transient jet formation presenting the specifications listed in 

Tab.4. Their difference is the number of future time-steps predicted at once. Fig.16 reports their training 

performance, as well as predictability for train and validation subsets. Moreover, a comparison is exhibited 

between predicted and true values for the test subset. 

 
Fig.16 – 2D transient jet case training reports: (left) mean squared error evolution during training – 

validation subset error considered for early stopping technique use; (right) observations versus predictions 

in test dataset. 

-20% 

+20
% 
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In Fig.17, it follows the same performance reports for the second model structured, encompassing two 

plots of predicted versus observed values that refer to each generated output (current and first future time-step 

cell states).  

 

                                                    
Fig.17 – 2D transient jet case training reports for prediction of velocity field components: (left) mean 

squared error evolution during training – validation subset error considered for early stopping technique 

use; (middle) observation versus predictions in test subset for current molar concentration prediction; 

(right) observations versus predictions in test subset for next time-step molar concentration prediction. 

As it can be observed, a reasonable fitting resulted for the regarded architectures in terms of both training 

performance (by achieving sufficiently low mean squared errors levels for train and validation subsets) and 

test subset assessment, in which the returned agreements between predictions and observations point to a 

generalization capability. 

Once built and trained, one must apply such models for field computation in order to visualize the time 

evolution of the plume. In Fig.18, it follows the prediction and its correspondent database element first time-

step range (using from the first to the fourth to predict the fifth). Next, Fig.19 portrays the range constituting 

the test subset (13-16 time-steps for evaluating the seventeenth one). A further assessment was accomplished 

by extending the whole time-step window to a series of unseen concentration fields (17-20 time-steps for 

evaluating the twenty-first one). 

 

          
Fig.18 – 2D transient jet case methane molar concentration field prediction at the fifth time-step (25s) for: 

(left) reference CFD data; (right) ANN prediction. 

As it can be seen, acceptable agreement is obtained the comparisons considered. This behavior indicates 

that the followed data-driven approach has a potential for extracting time evolution features. The expected 

pattern occurred for the time sequence after the range presented in the train dataset, which is worth to highlight. 

Nevertheless, a limitation arises from the restricted prediction only for the next time-step. Also, the time 

window width as well as time-step size constitute relevant factors to deeper understand, the impacts of which 

should be assessed for stating the methodology’s real potential. 
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Fig.19 – 2D transient jet case methane molar concentration field prediction at the seventeenth time-step 

(42.5s) for: (left) reference CFD data; (right) ANN prediction. 

            

Fig.20 – 2D transient jet case methane molar concentration field prediction at the seventeenth time-step 

(52.5s) for: (left) reference CFD data; (right) ANN prediction. 

In order to address the issue above, a modification was investigated by generating the second model, 

which can predict subsequent time-steps. The reports regarding its application included two time-step ranges. 

Fig.20 and Fig. 21 portray results observed and calculated regarding the range (3-8) using the first four fields   

and returning the fifth and sixth ones, a case belonging to the train subset. Fig.22 and Fig.23 provide the same 

comparison for time-steps ranging from the thirteenth to the eighteenth, in which the last two correspond to 

fields in future instants. 

A local limitation resulted for one of the unseen concentration fields in the train procedure. The first 

time-step field was reproduced satisfactorily, whereas the subsequent showed a distortion in the jet’s front 

zone. Such deviation may lead to error accumulation when extending the predictions to further instants. A 

possible modification to improve the performance may come from increasing previous time-steps fed to the 

network as input. This solution, however, would imply an increase in CFD data demand. 
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Fig.21 – 2D transient jet case methane molar concentration field prediction at the seventh time-step (17.5s) 

for: (left) reference CFD data; (right) ANN prediction. 

            
Fig.22 – 2D transient jet case methane molar concentration field prediction at the eighth time-step (20.0s) 

for: (left) reference CFD data; (right) ANN prediction. 

              
Fig.23 – 2D transient jet case methane molar concentration field prediction at the seventeenth time-step 

(42.5s) for: (left) reference CFD data; (right) ANN prediction. 

 

              

Fig.24 – 2D transient jet case methane molar concentration field prediction at the eighteenth time-step 

(45.0s) for: (left) reference CFD data; (right) ANN prediction. 

3.5 Upward Wind 

The ANN training performance follows in Fig.25, being assessed by mean squared error decay tracking. 

Its generalization capability was inferred from the comparison using the test subset, an analysis reported in 

Fig.25. Low levels of the chosen accuracy metric were reached, indicating an expressive representation of 
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fields contained in train subset. The majority of test data could be captured by the model. Nonetheless, a 

significative spread resulted, meaning a restriction in the generalization capacity.  

 

        
 

Fig.25 – 2D upward wind case training reports: (left) mean squared error evolution during training – 

validation subset error considered for early stopping technique use; (right) observations versus predictions 

in test dataset. 

The test subset comprised an arbitrarily selected set of concentration fields pairs discriminated by 

velocities of upward wind and contaminant leakage injection. Following the local strategy of accessing 

individual cells for state update, the current case set a more challenging problem for the proposed modelling. 

This assertion derived from addressing sensible concentrations patterns varied with the magnitude imposed to 

the two inlet conditions. A different strategy was used in relation to the 2D steady state plume case, consisting 

of receiving a concentration field correspondent to a given condition and, by means of the variations in the 

inlet velocities, the model is expected to provide the correspondent steady state field. 

One needs to visualize network’s predictions. Hence, in Fig.26, it follows the result returned for a 

condition of the train subset. Specifically, it reads the distribution correspondent to a leakage velocity of 0.5m/s 

and an upward wind at 0.1m/s to calculate the one for a leakage velocity of 2.0m/s; the proper inputs to the 

model consisted of velocities variations of 1.5m/s and 0m/s, besides the local state of each cell accessed. A 

reasonable reproduction could be observed. 

 

 

 

        
Fig.26 – 2D steady upward wind case methane molar concentration field prediction at leakage velocity of 

2.0 m/s and upward wind velocity of 0.1 m/s for: (left) reference CFD data; (right) ANN prediction. 

A similar plot (Fig.27) was made for a test subset flow condition. A case with leakage velocity changing 

from 3.0 m/s (input) to 6.0 m/s (output) and wind velocity passing from 0.2 m/s to 0.7 m/s. One may realize 

an acceptable concordance, the absolute error distribution of their following in Fig.28. Noteworthily, by 

combining different input steady fields for computing others, also steady, with several variations in the inlet 
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velocities, it was attempted to reduce the influence of the concentration field fed to the network, accessing its 

nodes individually, in other to predict the desired steady condition. In other words, it was intended to establish 

the prescribed concentration field constituting an input as a initialization to the model that is expected to 

provide the interpolation sought. 

 

          
Fig.27 – 2D steady upward wind case methane molar concentration field prediction at leakage velocity of 

6.0 m/s and upward wind velocity of 0.7 m/s for: (left) reference CFD data; (right) ANN prediction. 

 

Fig.28 – 2D steady upward wind case methane molar concentration field absolute error prediction at 

leakage velocity of 6.0 m/s and upward wind velocity of 0.7 m/s. 

4. CONCLUSION 

A coupled CFD-ANN approach was investigated in order to demonstrate its potential for dealing with 

gas dispersion and leakages predictions by combining a database building from reduced amounts of CFD 

results with the employment of computational learning algorithms, which would return a surrogate modelling 

serving primarily for interpolation purposes. Moreover, a local treatment was followed, whose main feature 

consists of recursively accessing the nodes that form the analysis discretization in either modes training or 

inference. 

The first case study allowed to address the capability of the methodology to capture the principal 

transport processes involved in the target physics, advection and diffusion, in the absence of other 

complexities, which may be included progressively in future studies. For this simple problem, excellent 

agreement resulted between the reference FVM solution and the data-driven model for the prediction of the 

scalar field time advancement in an interpolation scenario. It indicates the implementation consistency, 

essential to proceed further assessments. 

Passing to 2D case studies, problems in transient and stationary regimes were considered. In the first, 

the time evolution of a contaminant cloud was assessed, moving in a free atmospheric dispersion after the 

occurrence of a puff (instantaneous release). A considerable matching resulted in the comparison of the 

prediction and the CFD reference data for molar concentration field at one time-step transition. Nevertheless, 

as an important task that has remained, one needs to modify the ANN structure or training routine seeking to 

improve the time correlation extraction by the model. 
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The second 2D problem consisted of predicting a steady state methane plume in a free field. The 

observations thus made from the analysis performed in this scenario indicated that the local treatment originally 

developed for a transient regime presents a potential to be applied in a stationary fashion. The input variables 

fed for ANN processing were changed to distances to boundaries and inlet velocity of the correspondent case. 

The two networks constructed with equal architectures demonstrated to be able to accomplish an inference of 

molar concentration and the two velocity components in an extrapolation case. 

An analysis was performed by applying the regarded approach to model the same 2D plume case but in 

a transient fashion. So, the variables selected as inputs come back to be previous instants local concentrations. 

In particular, the analysis employed a 4 time-step window, i.e., the network processes the 4 previous instants 

fields to calculate the current one. Another model was also built using the same architecture that the previous 

with exception of predicting two next time-steps field instead of one. Promising outcomes were obtained 

concerning to predict satisfactorily the remain flow field time series. The extension of the prediction range, 

however, showed a slight limitation in the accuracy of the farther instant field; an observation that need to be 

deeper investigated for determining its real impact. 

The last case consisted of a steady state problem in which the wind effect was preliminarily assessed: 

an imposed upward wind at constant velocity changing the direction of a plume coming from a methane 

leakage forward. Different combinations of prescribed inlet velocities applied to wind and contaminant 

injection composed the CFD simulation results database. A distinct strategy relatively to the former steady 

case allowed achieving reasonable predictions, showing a potential for further development of the coupled 

CFD-ANN approach. 

Further features bringing different levels complexities to the modeled flow field must be accounted for 

in future work. Additionally, a special concern exists with respect to ensuring overall conservation of the 

predicted physical quantities.  Machine learning tools like neural networks and deep learning networks seems 

to constitute a potential way to conciliate more detailed time-consuming numerical simulations with the data-

intensive statistical and optimization methods by interpolation or extrapolation. Physics-informed data-driven 

approaches are considered a possible way forward. 
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