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ABSTRACT: The g-Weibull distribution has been apdlito the reliability analysis due to its ability i
modeling bathtub curves using a single set of patars. The g-Weibull model is based on the Tsallis
non-extensive entropy, which is used to descrilmeptex systems that demonstrate long-range
interaction and long-term memory. To model datdwiwWeibull, its parameters must be estimated
accurately. In this work, maximum likelihood estiora (MLE) are developed because they are
asymptotically efficient. However, due to the in&ie system of nonlinear equations derived from the
log-likelihood function and the constraints oves ffarameters, derivative-based optimization methods
may fail to converge. Since analytical expressiarmot be derived, nature-based heuristic optimizat
method of artificial bee colony (ABC), which doest mequire derivative information in the quest tioe
optimum, can be used to solve the maximum likelthoptimization problem. To deal with the slow
convergence of ABC, this paper proposes an adapyived ABC (AHABC) algorithm which combines
Nelder-Mead simplex search method with ABC for tiieximum likelihood estimates of the g-Weibull
parameters. The proposed algorithm is successiplhlied to one example involving failure data
characterized by bathtub-shaped hazard rate funatibich is adequately modeled by g-Weibull
distribution.

1. INTRODUCTION

The Weibull distribution, frequently used in rélility engineering, has been generalized to a g-
Weibull distribution by Picoli et a[1] in the context of non-extensive statistical imagics. Compared to
the Weibull distribution that can only describe ratumic hazard rate functions, the g-Weibull is able
model their various behaviors, including the monamnes: monotonically decreasing, monotonically
increasing, constant, unimodal and bathtub-shajesls et al[2] confirmed that the g-Weibull is able to
reproduce a bathtub curve using a single set afrpeters for its three characteristic regions. Assis
al. [2] also gave the range of the parameters thatldhmuused for each type of curve. The parameter q,
also known as entropy index in statistical mechani@s introduced by Tsalli8]. The Tsallis' entropy
generalizes the Boltzmann-Gibbs-Shannon normabpytwith this index and is given by:

1-3p!
q= q—1 (1)

S

wherel/ is the total number of microstates of the systenare the occupation probabilities and g
is a real parameter that rules the degree of gieredian of the theory. The standard Boltzmann-Gibb
entropy is recovered in the limitel.

Picoli et al.[1] firstly introduced the g-Weibull distributionhich slowly interpolates the g-
Exponential and the Weibull ones. The author vedlithat for highway length modeling neither g-
Exponential nor Weibull distributions led to a sédttory result, only the g-Weibull one gave a good
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adjustment. Furthermore, the g-Weibull distributi@s been successfully applied to model life data i
the context of reliability engineering. Costa efa] used g-Weibull distribution to properly des@&ib
time-to-breakdown data of electronic devices. Saetoal.[5] considered a g-Weibull distribution to
describe the failure rate of a compression urét igpical natural gas recovery plant, based on-tome
failure data. It is shown that the g-Weibull distriion fits better to the life data than the clas&feibull
distribution, since the g-Weibull is more genenad anore flexible due to the additional parameter q.

To model data with g-Weibull, its parameters nhesestimated accurately. The most commonly
used approach to estimate g-Weibull parametet®iteist squares estimation (LSE). Picoli ef1al.
used the mean square minimum method to obtaingtimal parameters. Sartori et fi] and Assis et
al. [2] calculated g-Weibull distribution parametersoiigh square correlation coefficieiit
maximization. Jose and Ndi&] provided likelihood function but claimed thais very difficult to obtain
the maximum likelihood estimates of the paramdtersause the equations are nonlinear.

Extensive simulation studies show that the maxiniikelihood estimation (MLE) method is better
than the LSE method in reliability applications wtdata sets are typically small or moderate in [§ike
Since the distribution of maximum likelihood parderesstimates are more precise with smaller vaganc
in this work, we adopt the MLE method. However, dpplication of MLE on g-Weibull distribution
presents some difficulties. The first derivativaiatipns of the related log-likelihood function &ighly
nonlinear, the equations do not have analyticaltemis for the parameters' estimators. In this exnga
numerical approach can be alternatively adoptethisnwork, we employ an artificial bee colony (ABC
algorithm, which is a nature-based heuristic methadl does not require derivative information tlveo
the maximum likelihood problem.

ABC was introduced by Karabo{fs] and is an optimization algorithm based on titelligent
foraging behavior of honey bee swarm for optimizimgjtidimensional and multimodal numerical
functions. However, the convergence performandsBs for local search is slow due to its solution
search equation, which is good at exploration loorr @t exploitation. Some modified versions of ABC
have been proposed by researchers to improvecis $earch performance. To mention a few, inspired
by PSO, Zhu and Kwon|@] proposed an improved ABC algorithm named glgestied ABC (GABC)
algorithm by incorporating the information of gldtmest solution into the solution search equatmon t
improve exploitation. Kang et gl10] proposed a Hooke-Jeeves ABC (HABC) algorithimol combines
Hooke-Jeeves pattern search with ABC algorithmhénHABC, the exploration phase is performed by
ABC and the exploitation phase is completed bygpatsearch. Karaboga and Gorkejtli] proposed
the Quick ABC (gABC), which models the behavioiotooker bees more accurately and improves the
performance of standard ABC in terms of local Seaituility. Kang et al[12] proposed a hybrid simplex
ABC algorithm (HSABCA) that combines Nelder-Meathpiex method with artificial bee colony
algorithm for inverse analysis problems. The HSAB@#s applied to parameter identification of
concrete dam-foundation systems. The Nelder-Meaglsi algorithm proposed by Nelder and
Mead[13] is an efficient local search method. It wasoatombined with other heuristic search method to
improve the convergence accuracy and speed. For@aaFan and Zahafa4] proposed the hybrid
NM-PSO algorithm based on the Nelder-Mead simpéatch method and particle swarm optimization
for unconstrained optimization.

A method that not only does not depend on detigdiut also presents fast convergence is
necessary in the MLE optimization problem. In tti®ction, this paper proposes an Adaptive Hybrid
ABC (AHABC) algorithm which combines a local Neldgiead simplex search method with ABC to
enhance the local search capability of ABC. AHAB@amically controls the exploration and
exploitation, given that the parameter for Neldezad local search is adaptively tuned accordinbdo t
search status.

This paper is organized as follows. In Sectioarintroduction about the g-Weibull distribution
and its properties are given. In Section 3, theimarm likelihood problem related to the g-Weibull
distribution is presented. In Section 4, AHABC altfom is proposed to solve the maximum likelihood
estimation problem. In Section 5, the proposed AIKIAB applied to one example involving reliability-
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related data that can be properly modeled by théedpull distribution. Finally, conclusions are givin
Section 6.

2. THE Q-WEIBULL DISTRIBUTION

The probability density function (PDF) of the g-WMdl distribution is as follows:

©=@-0LE) " e, [-(&)] e20 @

wheref > 0 andq < 2 are shape parameters anet 0 is a scale parameter. The g-Exponential
function is defined as:

expq(x) = {(1 +A-x)9, if1-(1-q)x > 0 3)
0, otherwise

Therefore, the g-Weibull PDF can be rewritten as:

1

—o—n® oo (D]
o=e-pfE) i-a-a ()| " ez0 @
in which
[0,00), forl<g<2
L€ {[O, tmax), forg<1 (5)
; __n
With t,0, = remmev
The g-Weibull cumulative distribution and reliatyilfunctions are as follows:
e
_ £\P]He
EO=1-|1-a-0 ()] (6)
g
R =[1-a-0 ()] ™
The hazard function is defined as:
@-q)2ptF
hy(t) = 2488 = —_2F 8)

Fa® gLy’

This equation is able to represent different tymfdsazard functions, according to the values ef th
shape parametef3], besides the constant type (with> 1 andp = 1). The functiorh, (t) is
monotonically decreasing fdr< q < 2 and0 < 8 < 1, monotinically increasing fay < 1 andg > 1,
unimodal forl < g < 2 andp > 1 and bathtube-shaped fpr< 1 and0 < g8 < 1.
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For numerical experiments, we use the inversestoam method by inverting, (t) to generate
random samples. The g-Weibull random number gemeisathen obtained:

(9)
where U is a uniform random number in [0,1].

3. THEMAXIMUM LIKELIHOOD CONSTRAINED PROBLEM FOR THE Q-
WEIBULL DISTRIBUTION

In order to estimate the parameters of the g-Wkedistribution, the MLE method is adopted. Let
t = (t1, ty, ..., ty) be an n-dimensional vector of observed failureetimg i = 1, ..., n, independently
drawn from a g-Weibull distribution. The likelihodanction is given by:

1
1-q

LnB.a10) =TT fy(t) = a2 - 0 £ (4) 7 [1- - (4)] (10)

Instead of maximizing Eq. (10), it is easier toimite its log-likelihood function as Eq. (11). The
optimization problem is constrained to the condisithat guarantee the properties of the g-Weilidif P
as Eqg. (12)-(15). The maximum likelihood constrdingtimization problem for the g-Weibull
distribution is given as follows:

max
£01,,416) = nin(2 — ) + nin(8) ~ nfIn(n) + (6 — 1) Ty n(e) + =Ty mi1 - (1 - ) (47 (1)

st2—q>0 (12)
1—(1—q)(%)ﬁ>0,i=1,...,n (13)
n>0 (14)
B>0 (15)

The first derivatives of log-likelihood functionrfparameters are nonlinear, and we cannot obtain
analytical solutions. A heuristic based constraioptimization method can solve this problem. Irs thi
paper, the maximum likelihood estimatg$ andg are obtained by means of AHABC algorithm, which
is described in the following section.

4. PROPOSED ADAPTIVE HYBRID ARTIFICIAL BEE COLONY ALGORITHM

4.1 Overview of Artificial Bee Colony Algorithm
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In ABC, the colony consists of three groups of beegployed bees, onlookers and scouts. The
position of a food source represents a possibldisalto the optimization problem and the nectaoant
of a food source corresponds to the fithess o&tiseciated solution. At the beginning, the algarith
generates a randomly distributed initial populatié§N solutions. Each solutiory (i = 1,2, ...,SN) is
an n-dimensional vector.

A candidate solutiom; from the old one; can be generated as:

Vij = Xij + i (Xij — Xj) (16)
wherek € {1,2, ..., SN} andj € {1,2, ..., D} are randomly chosen indexdsis different fromi; ¢;;

is a random number in the range [-1,1].
The fitness of a solutiofiit(x;) can be calculated from its objective function egfx;) as:

1 .
fit(x;) = 1+ () if f(x;) =0 .

1+ abs(f(xl-)), if f(x;)) <0

An onlooker bee chooses a solution depending omptbbability valuep; associated with food
sourcei as follows:

_ _ Jit(x)
Pi= S5V FitGen) (18)

After a candidate solution is produced and theefinis evaluated, its performance is compared
with that of its old one. If the fitness value betnew solutiomw; is higher than the current solutisp it
replaces the current solution, otherwise the ctigelution remains. When a solution cannot be imgdo
further through a predetermined number of cycledled limit’, then that solution is abandoned and
replaced with a new solution generated randomlg bgout as:

Xij = Xmin,j T rand(ofl)(xmax,j - xmin,j) (19)
wherex,,;, ; andx,,q,, ; are lower and upper bounds j& dimension.

4.2 Overview of Nelder-Mead Simplex Algorithm

The Nelder-Mead simplex algorithm was developedibider and MeaglL3] to efficiently find
local minima. This algorithm uses a simplexDof- 1 points forD dimensional vectors. The main idea is
to collaboratively mové + 1 vertices to the lowest point of the objective fima. This method rescale
the simplex by four procedures: reflection, expanscontraction and shrinkage. Lgt x,, ..., xp 11
represent the points in one simplex, ranking frobekest one to the worst one.

One iteration of simplex search can be describegithsr of two steps:

1) Replace the worst point

The candidates to replace the worst psjit; in previous simplex for the next iteration, andgé
candidates are:

Xr =Xo + a(xo — Xpi1) (20)

Xe =Xo +Y(Xo — Xp41) (21)
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Xe =Xo+ p(Xo — Xps1) (22)

where,a = 1,y = 2, p = —0.5, which are respectively reflection, expansion amati@action
coefficients[12]; x, is the center of point&,, x5, ..., xp}. The new(D + 1)t" point is the best candidate,
.e.,xp1 € {Xp, Xe, Xc} ANAS (p41) = min{f(x,), £ (xe), f(x)}-

2) Shrink the simplex towards the best paint

All points excepte; will be reduced towards,, i.e.

Xp=x1+6*(—x1),i=23,...,D+1 (23)

where § = 0.5 is the shrink coefficiertl2].
From these two steps, we can see that the simplklsis just exploiting local neighborhood area
and is very aggressive towards the local minimum.

4.3 The Adaptive Hybrid ABC for the g-Weibull MLE prebi

In the ABC algorithm, while onlookers and employexbs carry out the exploitation process in the
search space, the scouts control the exploratiocegs. From our simulation experiments, we fouatl th
although ABC could find the global optimum verytfate convergence speed of ABC for local search is
slow. In order to make full use of ABC’s exploratj@nd avoid its drawbacks, an adaptive hybrid ABC
proposed, which incorporates local search stage nTdin idea of AHABC is that through adaptively
tuning the parameters of hybrid ABC according ®dkarch process, the hybrid ABC will gradually
change from global ABC search pattern to localdeaattern. The details of this AHABC algorithm are
presented in the following subsections.

4.3.1 Hybrid Strategy

“Hybrid Strategy” is the method to combine ABC lwé local search algorithm. In our proposed
algorithm, the Nelder-Mead simplex local searcimé®rporated into ABC as an additional phase dfter
original three phases within every iteration. Tineut of local search phase is the best 1 solutions in
the population, wherB is dimension of the optimization problem. Theskitsans will be exploited by
the Nelder-Mead simplex local search for a numibéuraction evaluation®Vs.

4.3.2 Adaptive Switch Mechanism

“Adaptive switch mechanism” describes the mechmariisw the hybrid algorithm is changing from
global exploration to local exploitation. Basigalthe principle of “adaptive switch mechanismtas
gradually increase the use of local search by tualgorithm parameters according to the searchegsoc
In this paper, we propose the following formulal&germine the number of function evaluations for
simplex search:

NS = C = limit * total number of scout bees. (24)

Firstly, this definition ofVS will guarantee that the search process will becorase and more
local. Secondly, the total number of scout beessgmbol of search status. A large number of sbeas
indicates that a significant portion of the solat&pace has been explored, that the exploration is
becoming inefficient and a local exploitation icbming urgent. Th&mit is also an important ABC
parameter, which controls the scout bee gener&giencyC is a coefficient that controls the amount
of local search. For the optimization problem iis tivork, C = 1 provided an acceptable convergence
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speed. Thus, we use the productisfit and the total number of scout bees as the nunilfenction
evaluations within the local search phase of théABB. In summaryNS dynamically increases along
the search process and it gradually changes frobagto local.

4.3.3 Constraints

For the constraints (12-15) related to the g-WieMIULE problem, we adopt the “throw away”
approach, which means that if the generated soligioot feasible, we throw it away and keep the
current solution. Basically, this is a simplifie@is rule[15] that involves domination rules between
solutions.

There are three commonly used control paramatdteistandard ABC: the number of food
sourcesSN, the value otimit, which can be obtained from the formlilait = SN = D [8], whereD is
dimension of the optimization problem, and the maxin cycle number{CN). In the AHABC
algorithm, one iteration cycle incorporates thedé¢elMead local search iterations. Instead of sgttie
iteration numbers for ABC and Nelder-Mead localrebaeparately, we use one parameter of maximum
number of function evaluation®§E), totaling the number of the ABC and Nelder-Meachl search
function evaluations. There are three stop criteria

1) Maximum number of function evaluationd ¥E).

2) The global best solution is the same fauxBestTrial times. In this case, the iteration number
in which the best solution has been found is used.

3) The global best objective function value in two secutive iterations are different, but such a
difference is less than a predefined tolerance

5.  APPLICATION EXAMPLES

In this section, the proposed AHABC for the maximiikelihood estimates of the g-Weibulll
parameters is applied to one example involvingbdlity-related data of engineering equipment. this
application example, AHABC parameters are shownhable 1. Also, the initial bounds for parameters q,
B andn are set to [-10, 1.9], [0.1, 10], [04,,..n], respectively, where,,..,, is the mean of sample.

Table 1-AHABC parameters

Paramete Value
ABC SN 5C
limit 15C
MFE 200,00(
maxBestTrial | 100C
€ le-16
Nelde-Mead simple>| a 1
method y 2
p -0.5
) 0.t
Adaptive hybrid C 1
coefficient

Failure data of oil well pum[2] in Table 2 is analyzed. The objective is toabtthe maximum
likelihood estimates for the g-Weibull parameteysiieans of the proposed AHABC.
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8 38 42 59 71 14¢€ 184
18¢ 19¢ 204 214 37¢ 457 457
494 51t 56¢ 68C 684 80¢ 964

The AHABC is replicated 30 times. The estimatedBMflarameters and the associated standard
deviations are shown in Table 3. For these estsnétte PDF, the reliability function and the bakhtu
shaped hazard rate function are presented in Figligure 3.

Table 3-maximum likelihood estimates for 30 repima of AHABC

Mear Stc

q —2.1910 4.5853E-07
I 0.7726 1.6977E-08
Ui 4455.2019 9.2597E-04
L —142.2998 9.6310E-14
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Figure 1 — g-Weibull probability density function
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Figure 2 — g-Weibull reliability function
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Figure 3 — g-Weibull hazard rate function

To test the goodness-of-fit, we use the KolmogeBavirnov (KS) test, which compares the
empirical and the cumulative distribution functi@bDF). However, the traditional KS test is not
applicable in our situation where the parameteth®theoretical distribution have been estimatehf
the same bunch of data used to apply this goodrfefiistest[16]. Therefore, a bootstrapped version of
the KS tesf17] has been developed and applied. The KS tasstit is computed as follows:

DO = max ||Fu(t) — F(tla B i), [Futio) — FCla B | (25)
whereF, (t;) = i/n is the empirical CDF ang(t,) = 0, F(t;14,3,#) is theoretical CDF with

estimated parametei8.bootstrap sampled = {t],¢J, ...,t3},j = 1,2,..., B are generated using Eq. (9)

with g, 8,7. The maximum likelihood estimatés, 37,7/ for thejt* sample are obtained by the proposed
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AHABC. The test statisti®’ is computed witlF (¢! |§/,87,7/) in place ofF (t;|§,5,7). Then, we get
B + 1 observations of the KS test statighicThe p-value is computed as the number of obsenst
whereD’ exceed®? divided byB + 1.

In this exampleB = 999, n = 21, D° = 0.1431 andp = 0.4160. With such large p-value, we
cannot reject the hypothesis that data from Talit@l@ws the estimated g-Weibull distribution. Figud
presents the empirical and estimated CDFs of tiginat sample data.
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Figure 4 — Empirical and estimated CDFs

6. CONCLUSIONS

This paper presents a novel numerical optimizadigorithm to obtain the maximum likelihood
estimates of g-Weibull parameters, which canndarmdytically solved. An adaptive hybrid artificiade
colony (AHABC) algorithm is proposed, which comlsrtbe global exploration of ABC and the local
exploitation of Nelder-Mead simplex search. Mor@artantly, in order to dynamically control the
exploration and exploitation, the number of funatevaluations for local search in one ABC iteraimn
adaptively tuned according to the search statdgxied by the product of total number of scout lzeeks
limit value. The proposed algorithm is applied toexample involving failure data characterized by
bathtub-shaped hazard rate functions, which arguedely modeled by the g-Weibull distribution.
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