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1. INTRODUCTION 
Linha simples 
  A repairable system, characterized as being restorable with no need of complete replacement, can 
reach five states following a repair: as good as new, as bad as old, better than old but worse than new, 
better than new and worse than old [1]. Traditional probabilistic models in literature of repairable system 
analysis account for the states as good as new and as bad as old condition, which are modeled by renewal 
process (RP) and non-homogeneous Poisson process (NHPP), respectively. Nevertheless, these states are 
often exceptions rather than rule, from the standpoint of practical reliability engineering [2]. 
 In this context, Kijima & Sumita [3] have proposed a probabilistic model, named generalized 
renewal process (GRP), which is able to attend all the post-repair states due to the inclusion of the 
parameter of repair effectiveness. This parameter, denoted in this paper as r, represents the post-repair 
states through the notion of virtual age [4]. GRP has been widely applied using times to failure assumed 
to be Weibull random variables [1,2,5,6]. 
 Although the Weibull distribution has been widely used along with GRP, the q-Weibull probability 
distribution appears as an interesting alternative to be used in the GRP. The q-Weibull is proposed as a 
distribution which smoothly interpolates the q-Exponential and the Weibull in order to generate a unified 
framework to accommodate different cases of data adjustment [7]. The Weibull distribution can handle 
monotonically decreasing, constant and monotonically increasing hazard rate functions, whereas, besides 
these three behaviors, the q-Weibull distribution can model two additional ones with a single set of 
parameters: unimodal and U-shaped (bathtub curve) [8]. Therefore, it is expected that the q-Weibull into 
GRP would bring more flexibility. This flexibility is due to the 𝑞 parameter, which controls the shape of 
the distribution along with the β parameter, while the Weibull distribution has just β affecting its shape. 

In the proposed GRP model type I, the time to the occurrence of the first failure are distributed 
according to a q-Weibull, while the subsequent failures follow a conditional q-Weibull distribution, 
meaning that the arrival of a subsequent failure is conditional on the cumulative operating time up to the 
last failure. The maximum likelihood estimates are obtained for failure-terminated cases. The estimation 
of GRP parameters based on the maximum likelihood method results in an intricate system of first 
derivatives and the parameter estimators are very difficult to be analytically obtained. Therefore the 
chosen estimation is to maximize the log-likelihood function by means of a Particle Swarm Optimization 
(PSO) algorithm. PSO is a derivative-free probabilistic heuristic based on the social behavior of 
biological organisms which has as a basic element a particle that can fly throughout the search space of 
the problem toward an optimum using its own information and the information provided by other 
particles within its neighborhood [9]. 
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2. OBJECTIVES 
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 The main objective of this paper is to propose a GRP model based on the q-Weibull distribution. In 
order to estimate the model parameters, the associated log-likelihood function is optimized by PSO. The 



   
   
q-Weibull-based GRP is applied to failure data sets extracted from Yañez et al. [1] and Wang & Yang [2], 
which concerns a compressor and an NC machine tool, respectively. 
 
3. DESCRIPTION 
Linha simples 
3.1 q-Weibull distribution 
 

The proposals of generalization of Weibull distribution often share the base on the exponential 
framework. Exponentials are commonly used in non-interacting or weakly interacting systems, while 
power-laws are used in the statistical distributions of complex systems, for instance systems that exhibit 
long-range (spatial) interactions, long-term (temporal) memory, among others [8]. 

However, component’s failure usually have multiple and interacting causes, therefore a complex 
behavior can possibly appear. Power-law like expressions are expected to substitute exponentials in the 
statistical description for these cases [8]. The q-distributions optimize generalized entropies such as 
Tsallis nonextensive entropy, a generalization of Boltzmann-Gibbs-Shannon (BGS) entropy, introducing 
the possibility to extend statistical mechanics to complex systems in a coherent and natural way [7]. The 
q-Exponential function can be defined as: 

 

𝑒𝑒𝑒𝑞(𝑥) = � (1 + (1 − 𝑞)𝑥)
1

(1−𝑞), if (1 + (1 − 𝑞)𝑥) ≥ 0,
0,                       otherwise.

                                                                               (1) 

 
In this context, the q-Weibull distribution can be seen as natural step forward to Weibull 

distribution on the light of nonextensive statistics, as it is derived from the substitution of the Exponential 
function by a q-Exponential in the classic Weibull model, represented in Equation (2) [8]: 

 

𝑓𝑞(𝑡) = (2 − 𝑞) 𝛽
𝛼
�𝑡
𝛼
�
𝛽−1

𝑒𝑒𝑒𝑞 �−�
𝑡
𝛼
�
𝛽
�,                                                                                        (2) 

 
in which parameters β and 𝑞, control the shape of the distribution, whereas α is the scale parameter. 
Differently from the classic Weibull, the q-Weibull has two parameters which affect its shape. 

The support of Equation (2) changes depending on the value of q: 
 

𝑡 ∈  �
[0,∞),     for 1 < 𝑞 < 2,
[0, 𝑡𝑚𝑚𝑚],         for 𝑞 < 1,                                                                                                         (3) 

 
where 𝑡𝑚𝑚𝑚 = 𝛼 (1 − 𝑞)1 𝛽⁄⁄  is the maximum allowed time so as to preserve the probabilistic properties 
of Equation (2) when 𝑞 <  1. For these values the integration of 𝑓𝑞(𝑡) diverges for 𝑡 > 𝑡𝑚𝑚𝑚 [8]. 

The q-Weibull distribution has other probability distributions as special cases: when 𝛽 = 1, a q-
Exponential distribution; for 𝑞 → 1, a Weibull distribution; for both 𝛽 = 1 and 𝑞 → 1, an Exponential 
distribution. The q-Weibull cumulative distribution and reliability function are given by Equations (4) and 
(5), respectively: 

𝐹𝑞(𝑡) = 1 −  �𝑒𝑒𝑒𝑞 �− �
𝑡
𝛼
�
𝛽
��
2−𝑞

= 1 −  �1 − (1 − 𝑞) �𝑡
𝛼
�
𝛽
�
2−𝑞
1−𝑞

 ,                                                 (4) 

  

𝑅𝑞(𝑡) = �𝑒𝑒𝑒𝑞 �−�
𝑡
𝛼
�
𝛽
��
2−𝑞

= �1 − (1 − 𝑞) �𝑡
𝛼
�
𝛽
�
2−𝑞
1−𝑞

                                                                  (5) 

 



   
   

Assis et al. [8] list the combination of β and 𝑞 values representing the various types of hazard rate 
function behaviors that can be reproduced by the q-Weibull distribution (Table 1): monotonically 
decreasing, constant, monotonically increasing, unimodal and U-shaped (bathtub curve). The hazard rate 
function is given by Equation (6): 

 

ℎ𝑞 = 𝑓𝑞
𝑅𝑡

= (2 − 𝑞) 𝛽
𝛼
�𝑡
𝛼
�
𝛽−1

�𝑒𝑒𝑒𝑞 �− �
𝑡
𝛼
�
𝛽
��
𝑞−1

=  (2 − 𝑞) 𝛽
𝛼
�𝑡
𝛼
�
𝛽−1

�1− (1 − 𝑞) �𝑡
𝛼
�
𝛽
�
−1

.     (6) 

 
Table 1 – Behaviors of hazard rate in the q-Weibull distribution [5] 

 
𝟎 <  𝜷 < 𝟏 𝜷 =  𝟏 𝜷 >  𝟏 

𝒒 <  𝟏 Bathtub curve Monotonically increasing Monotonically increasing 
𝒒 =  𝟏  Monotonically decreasing Constant Monotonically increasing 

𝟏 <  𝒒 <  𝟐 Monotonically decreasing Monotonically decreasing Unimodal 
 

3.2 Generalized Renewal Process 
 
The GRP, probabilistic model proposed by Kijima & Sumita [3], is able to incorporate the five 

post-repair states that a repairable system may assume. The models that have been mostly used in the 
reliability analysis of repairable systems are the RP and the NHPP, which can be considered particular 
cases of GRP [1]. However, RP and NHPP assume simplifying hypotheses which restrict its application 
to realistic cases. 

The RP assumes that the failures are independent and identically distributed, therefore the system 
returns to an as good as new condition, representing an ideal situation [1]. This situation may only occur 
when the system is completely replaced after the failure, resembling to non-repairable systems. 

In the NHPP the time between failures follows a conditional exponential probability function, 
meaning that the arrival of the 𝑖th failure is conditional on the cumulative operation time up to the 𝑖 − 1 
failure. It is assumed that the system condition is as bad as old after a repair [1]. 

By covering major repair assumptions encountered in practice, GRP provides more flexibility in 
modeling real life failure occurrence processes [5]. Figure 1 presents a categorization of stochastic point 
processes for modeling repairable systems. 

 

 
Figure 1 – Categories of stochastic point processes for repairable systems [1] 

GRP presents the concept of virtual age, which is illustrated in Figure 2. If 𝑥𝑖 and 𝑦𝑖, in Figure 2, 
are the equipment’s calculated age before and after repair, respectively, and 𝑡𝑖 is the chronological time, it 
is possible to verify the relation between the virtual age of the system and the real age, according to  
parameter 𝑟, defined as the repair effectiveness [6]. 

The values of the parameter 𝑟 can be seen as an index for representing effectiveness and quality of 
repair. Assuming 𝑟 =  0 leads to an RP (as good as new condition), while 𝑞 =  1 leads to an NHPP (as 
bad as old condition). The intermediate values 0 <  𝑟 <  1 lead to a condition of better than old but 



   
   
worse than new. When 𝑟 >  1, the equipment’s condition is worse than old; and when 𝑟 <  0, the 
equipment’s associated condition is better than new [1,6]. 

Accordingly to Kijima [10], two models can be constructed depending on how the repair activities 
affect the virtual age process. In the first model, it is assumed that the 𝑛th repair cannot remove the 
damages incurred before the (𝑛 − 1)th repair. The virtual age type I is given by Equation (7). In the 
second model, virtual age type II, at the 𝑛th failure the virtual age has been accumulated to 𝐴𝑛−1 +  𝑋𝑛, 
as defined in Equation (8): 

 
𝐴𝑛 =  𝐴𝑛−1 + 𝑟 𝑋𝑛,                                                                                                                          (7) 
 
𝐴𝑛 = 𝑟 (𝐴𝑛−1 + 𝑋𝑛).                                                                                                                       (8) 
 

 
Figure 2 – Virtual age and the repair index 

 
Kijima type I assumes that the 𝑛th repair can only compensate for the damage accumulated during 

the period of time between the 𝑛th and (𝑛 − 1)th failure, while Kijima type II assumes that the repair can 
compensate the system damage since the beginning of its operation [2]. It is recommended for complex 
systems to be modelled using Kijima type II GRP model, while individual components should be 
modelled using Kijima type I GRP model [4]. In this paper an individual component is analyzed, thus the 
virtual age type I is applied. 

 
3.3 Maximum Likelihood Estimators for q-Weibull-GRP parameters 
 

In order to obtain the maximum likelihood estimators for the proposed q-Weibull GRP model, the 
definition of conditional probability is used: 

 
𝑃(𝑇 ≤ 𝑡|𝑇 > 𝑡1) =  𝐹(𝑡)−𝐹 (𝑡1)

𝑅(𝑡1)
= 1−𝑅(𝑡)−1+𝑅(𝑡1)

𝑅(𝑡1)
= 1 − 𝑅(𝑡)

𝑅(𝑡1)
 .                                                        (9) 

 
Where 𝐹(∙)  and 𝑅(∙)  are, respectively, the probability distribution of component failure and 

reliability at the respective times. Assuming a q-Weibull distribution Equation (9) turns into: 
 

𝐹(𝑡𝑖|𝑡𝑖−1) = 1 −  
�𝑒𝑒𝑒𝑞�−

𝑡𝑖
𝛼�

𝛽
�
2−𝑞

�𝑒𝑒𝑒𝑞�−
𝑡𝑖−1
𝛼 �

𝛽
�
2−𝑞 .                                                                                                         (10) 

 
The conditional q-Weibull density function is: 



   
   

 

𝑓(𝑡𝑖|𝑡𝑖−1) = (2 − 𝑞) 𝛽
𝛼

  �𝑡𝑖
𝛼
�
𝛽−1

 𝑒𝑒𝑒𝑞 �−
𝑡𝑖
𝛼
�
𝛽

 �𝑒𝑒𝑒𝑞 �−
𝑡𝑖−1
𝛼
�
𝛽
�
𝑞−2

.                                               (11) 
 
When the Kijima’s virtual age type I is introduced to Equation (11) it becomes: 

 

𝑓(𝑡𝑖|𝑡𝑖−1) = (2 − 𝑞) 𝛽
𝛼

 �
𝑡𝑖+𝑟 ∑ 𝑡𝑗𝑖−1

𝑗=1  

𝛼
�
𝛽−1

 𝑒𝑒𝑒𝑞 �
−𝑡𝑖−𝑟 ∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽

�𝑒𝑒𝑒𝑞 �−
𝑟 ∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽

�
𝑞−2

.         (12) 

 
Equations (9)-(11) are valid for the subsequent 𝑖 − 1 observations after the first failure occurrence. 

 
3.3.1 Failure-terminated GRP maximum likelihood estimators 

 
Failure-terminated cases are the occasions when failure data are available up to the time at the last 

failure occurrence. Considering that the first failure doesn’t attend to the conditional probability function, 
then, the likelihood function is given by: 

 
𝐿 = 𝑓(𝑡1) ∏ 𝑓(𝑡𝑖)𝑛

𝑖=2 .                                                                                                                                 (13) 
 
By substituting Equations (2) and (12) in Equation (13), the maximum likelihood function can be 

written as 
 

𝐿(𝛼,𝛽, 𝑞, 𝑟|𝑡) = (2 − 𝑞) 𝛽
𝛼

 �𝑡1
𝛼
�
𝛽−1

 �1 − (1 − 𝑞) �𝑡1
𝛼
�
𝛽
�

1
(1−𝑞)

∏ (2 − 𝑞)𝑛
𝑖=2  𝛽

𝛼
 �
𝑡𝑖+𝑟 ∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽−1

 �1 − (1 −

𝑞) �
𝑡𝑖+𝑟 ∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽

�

1
1−𝑞

 �1 − (1 − 𝑞) �
𝑟 ∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽

�

𝑞−2
1−𝑞

.                                                                                        (14) 

 
and the corresponding log-likelihood function actually used as objective function is: 
 

ℒ(𝛼,𝛽, 𝑞, 𝑟|𝑡) = (β − 1) ln 𝑡1 + (1 −  𝛽 − 𝑛) ln𝛼 + 𝑛 (ln𝛽 + ln(2 − 𝑞)) +  1
(1−𝑞) �1 − (1 −

𝑞) �𝑡1
𝛼
�
𝛽
�+  ∑ �(𝑞−2)

(1−𝑞)
ln �1− (1 − 𝑞) �

𝑟∑ 𝑡𝑗𝑖−1
𝑗=1

𝛼
�
𝛽

�+ (𝛽 − 1) ln �
𝑡𝑖+𝑟∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
� +  1

(1−𝑞)
ln �1 − (1 −𝑛

𝑖=2

𝑞) �
𝑡𝑖+𝑟∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽

��.                                                                                                                                                  (15) 

 
The procedure adopted to find the maximum likelihood estimators would be to differentiate the 

log-likelihood function with respect to each of the parameters, make the derivatives equal to zero and 
solve the resulting system of equations. However, the resulting system involves intricate nonlinear 
equations and analytical expressions for the estimators cannot be obtained. Therefore, in this paper, a 
constrained optimization method based on PSO heuristic is adopted. The optimization problem must be 
solved to find the maximum likelihood estimators is: 

 



   
   
𝑚𝑚𝑚

𝛼,𝛽,𝑞,𝑟 (𝛽 − 1) ln 𝑡1 + (1 −  𝛽 − 𝑛) ln𝛼 + 𝑛 (ln𝛽 + ln(2 − 𝑞)) +  1
(1−𝑞) �1 − (1 − 𝑞) �𝑡1

𝛼
�
𝛽
�+

 ∑ �(𝑞−2)
(1−𝑞)

ln �1 − (1 − 𝑞) �
𝑟∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽

�+ (𝛽 − 1) ln �
𝑡𝑖+𝑟∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
� +               1

(1−𝑞)
ln �1 − (1 −𝑛

𝑖=2

𝑞) �
𝑡𝑖+𝑟∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽

��                                                                                                                                     (16) 

s.t.        (2 − 𝑞) ≥ 0,                                                                                                                                 (17) 

1 − (1 − 𝑞) �
𝑟 ∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽

≥ 0,                                                                                                        (18) 
𝑡𝑖+𝑟∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
 ≥ 0,                                                                                                                             (19) 

1 − (1 − 𝑞) �
𝑡𝑖+𝑟∑ 𝑡𝑗𝑖−1

𝑗=1

𝛼
�
𝛽

≥ 0,                                                                                                   (20) 
𝛼 ≥ 0,                                                                                                                                           (21) 
𝛽 ≥ 0.                                                                                                                                           (22) 

 
3.4 Particle Swarm Optimization 
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PSO is a probabilistic optimization heuristic inspired by the social behavior of biological organisms, 
specifically the ability of animal groups to work as a whole in order to find some desirable position. This 
seeking behavior is artificially modeled by PSO, which has been mainly used in the quest for solutions of  
non-linear optimization problems in a real-valued search space [11].   

For a problem with 𝑛-variables, each possible solution can be considered as a particle with a 
position vector of dimension 𝑛 and the population of particles is defined as swarm [12]. In PSO, particles 
move through the search space accordingly to the combination of the best solution they individually 
found and the best solution that any particle in the neighborhood found [11]. A neighborhood can be 
defined as the subset of particles with which a given particle is able to communicate. Each particle, 
represented by 𝑗, 𝑗 = 1, … ,𝑛𝑝𝑝𝑝𝑝 is composed by the following features: current position in the search 
space (𝑠𝑗), best position it has visited so far (𝑝𝑗), velocity (𝑣𝑗) and fitness, which is the value of the 
objective function [11].  

The q-Weibull-based GRP maximum likelihood problem, represented by the Equations (16) to (22), 
involves a four-dimensional search space where each dimension is related to the decision variables 𝛼, 𝛽, 
𝑞 and 𝑟. Therefore, 𝑠𝑗, 𝑝𝑗, 𝑣𝑗 are four-dimensional vectors that have their entries associated with 𝛼, 𝛽, 𝑞 
and 𝑟. 

In this paper the lbest PSO algorithm is used, an approach that defines that a particle can obtain 
information only from a subset of particles, which is summarized in the flow chart presented in Figure 3. 
During the iterative process, the swarm evolution occurs as every particle has the velocity and position 
update equations applied to each dimension 𝑘 [9]: 
 
𝑣𝑗𝑗(𝑚 + 1) =  𝜒  �𝑣𝑗𝑗(𝑚) +  𝑐1𝑢1 �𝑝𝑗𝑗(𝑚) − 𝑠𝑗𝑗(𝑚)� + 𝑐2𝑢2 �𝑝𝑔𝑔(𝑚)− 𝑠𝑗𝑗��,                                  (23) 
𝑠𝑗𝑗(𝑚 + 1) =  𝑠𝑗𝑗(𝑚) + 𝑣𝑗𝑗(𝑚 + 1),                                                                                                     (24) 
 
where 𝑚  is the iteration number, 𝜒  is the constriction factor which avoid velocity explosion during 
iterations, 𝑐1 and 𝑐2 are positive constants, 𝑢1 and 𝑢2 are independent uniform random numbers between 0 
and 1, 𝑝𝑔𝑔 is the 𝑘th entry of vector 𝑝𝑔 related to the best position that has been found by any neighbor of 
particle 𝑗 [9].  



   
   

The updates of velocities and positions happen until a stop criterion is met. Three stop criteria are 
used in this paper: maximum number of iterations; the global best particle is the same for 10% of the 
maximum number of iterations; the global best fitness values in two consecutive iterations are different, 
but such a difference is less than a predefined tolerance δ. 

 

 
Figure 3 – PSO flow chart 

 
4. RESULTS 

simples 
The PSO algorithm was implemented in MATLAB and run in a personal computer with 2.53 GHz, 

2Gb of RAM and Windows 7 operating system. The data for the application of PSO in order to obtain the 
maximum likelihood estimates for the q-Weibull-based GRP are presented in Table 2 and Table 3, which 
correspond to failures of a compressor [1] and of an NC machine tool [2], respectively. PSO parameters 
are listed in Table 4. 

The estimated parameters of Yañez et al. [1] (compressor case) obtained from a GRP model based 
on the Weibull distribution were 𝛼 = 3072; 𝛽 = 1,620, representing an increasing hazard rate and 0,70 
as repair index, which suggest that the compressor’s repair leads to a better than old but worse than new 
condition. The results of q-Weibull GRP model proposed in this paper, in turn, show an estimation of the 
repair index 𝑟 =  0,459, a condition of better than old but worse than new, as the former result. However, 
the combination of 𝛽 =  2,519 and 𝑞 =  1,139 indicates a unimodal hazard rate (see Table 1), differently 
from the increasing behavior found by Yañez et al. [1] (Figure 4).  

The estimated parameters for the NC machine tool case from Wang & Yang [2], which also uses a 
GRP based on the Weibull distribution, were 𝛼 = 158,73; 𝛽 = 0,766 and 𝑟 = 0,109 , which suggest a 
post-repair condition of better than old but worse than new and a monotonically decreasing hazard rate. 
The results obtained with q-Weibull of 𝛽 =  0,333, 𝑞 =  −2,659 leads to a bathtub curve hazard rate 
(Figure 5) and 𝑟 = 0,022 to the same repair effectiveness category as the work in comparison, although it 
is near to the perfect repair. These results are summarized in Table 5. 

The unimodal behavior observed for the compressor in the q-Weibull GRP results can be justified 
as a case when a product has two or more failure modes or causes [13]. The second result, a bathtub curve 
for the NC machine tool, represents three distinct periods of the equipment failure behavior: the burn-in 
failure period; the period that the equipment presents approximately a constant failure rate; the wear-out 
failure period [13]. 

 



   
   

Table 2 – Time between failures for a compressor [1]  

Number 
of failures 

Time 
between 
failures 

(h) 

Number 
of failures 

Time 
between 
failures 

(h) 

Number 
of failures 

Time 
between 
failures 

(h) 

1 3456 9 3072 17 244 
2 1584 10 384 18 1528 
3 236 11 2448 19 44 
4 516 12 32 20 3064 
5 1820 13 360 21 324 
6 452 14 998 22 1528 
7 432 15 656 23 348 
8 1264 16 180 24 336 

 
Table 3 – Time between failures for a NC machine tool [2] 

Number 
of failures 

Time 
between 
failures 

(h) 

Number 
of failures 

Time 
between 
failures 

(h) 

Number 
of failures 

Time 
between 
failures 

(h) 

Number 
of failures 

Time 
between 
failures 

(h) 

1 27,51 8 341,4 15 76,43 22 432,42 
2 340,01 9 9,28 16 471,23 23 87,75 
3 27 10 88,17 17 32,4 24 81,01 
4 1,12 11 86,34 18 86,43 25 220,05 
5 11,11 12 318,44 19 83,18 26 91,7 
6 25,74 13 323,12 20 196,27 27 82,17 
7 81,68 14 169,63 21 70,91 28 92,98 

 
Table 4 – PSO parameters 
Parameter Value 

Number of particles 30 
Number of neighbors 2 
Number of iterations 10000 

Number of algorithm’s replication 30 
𝑐1 = 𝑐2 2,050 
𝜒  7,298 ∙ 10−1 
δ 10−16 

 
PSO was replicated for both cases 30 times and the descriptive statistics and the maximum 

likelihood estimators for the best particle results are presented in Tables 6 and 7, respectively for the 
compressor case and the NC machine tool case. The computation time for the first case was, in average, 
72 seconds per run, while the second case took approximately 395 per replication. 



   
   

 
Figure 4 – Hazard rate functions related to the time until first failure occurrence from Weibull-

based [1] and q-Weibull-based (this work) GRPs, compressor case 
 

 
Figure 5 – Hazard rate functions related to the time until first failure occurrence from Weibull-

based [2] and q-Weibull-based (this work) GRPs, NC machine tool case 
 

Table 5 – Comparison between Weibull and q-Weibull GRP 

  
Compressor NC Machine tool 

  
Weibull GRP q-Weibull GRP Weibull GRP q-Weibull GRP 

Parameters 

𝛼 3072 2954,760 158,730 26021,081 
𝛽 1,620 2,510 0,766 0,333 
𝑞  - 1,130 -  -2,659 
𝑟 0,700 0,460 0,109 0,022 

Hazard Rate Monotonically 
increasing Unimodal Monotonically 

decreasing Bathtub curve 

 
The differences between the results of q-Weibull-GRP and Weibull-GRP presented may be 

justified by the higher flexibility of the q-Weibull model when compared to the traditional Weibull 



   
   
distribution. Therefore, the proposed model may represent an efficient alternative modeling approach to 
repairable systems, being able to incorporate different behaviors of the hazard rate function, including the 
unimodal and bathtub-shaped ones. 

 
Table 6 – PSO results for compressor case 

Compressor Best particle Minimum Maximum Median Mean Std. Dev Coefficient 
of variation 

Parameters 

𝛼 2954,76151 2954,76122 2954,76171 2954,76147 2954,76147 1,23E-04 4,17E-08 

𝛽 2,51957 2,51957 2,51957 2,51957 2,51957 1,83E-07 7,25E-08 

𝑞 1,13933 1,13933 1,13933 1,13933 1,13933 3,06E-08 2,69E-08 

𝑟 0,45855 0,45855 0,45855 0,45855 0,45855 4,94E-08 1,08E-07 
Maximum Log-

Likelihood -189,04136 -189,04136 -189,04136 -189,04136 -189,04136 3,77E-14 1,99E-16 

 
Table 7 – PSO results for NC machine tool case 

NC Machine  
Tool Best particle Minimum Maximum Median Mean Std. Dev Coefficient 

of variation 

Parameters 

𝛼 26021,08099 2346,13792 26021,08099 24798,29357 24827,15365 6,28E+02 2,53E-02 

𝛽 0,33342 0,33337 0,33867 0,33516 0,33533 1,15E-03 3,42E-03 

𝑞 -2,65940 -2,68131 -2,56253 -2,62673 -2,62921 2,83E-02 1,08E-02 

𝑟 0,02206 0,02155 0,02215 0,02184 0,02183 1,47E-04 6,74E-03 
Maximum Log-

Likelihood -164,52931 -164,53395 -164,52931 -164,53145 -164,53140 1,19E-03 7,25E-06 

 
5. CONCLUSIONS 
Linh 

In this paper a maximum likelihood estimation for the failure-terminated case of q-Weibull GRP 
using Kijima virtual age type I parameters is proposed. Although the Weibull distribution has been widely 
used with GRP, the q-Weibull is expected to bring more flexibility to the model because of the 𝑞 
parameter affecting the shape as well as 𝛽 parameter. 

Due to the complexity of solving the maximum likelihood optimization problem, a probabilistic 
heuristic is used instead of solving the corresponding system of derivatives. The chosen method, PSO, 
proved to be a great tool for solving non-linear optimization. In fact, the PSO provided coherent estimates 
for the parameters of the q-Weibull GRP. The results found in this paper were compared with two papers 
of Weibull GRP applications and differences between the hazard rate’s behaviors were observed. The 
numerical experiments provided low standard deviations for the parameter estimates and also for the 
maximum log-likelihood values, which indicates the PSO ability in providing very similar solutions for 
the q-Weibull maximum likelihood problem related to a specific failure data set in different runs.   

A step forward to this paper is to formulate the maximum likelihood estimators of q-Weibull GRP 
for the time-terminated cases and combine the PSO algorithm to local search methods in order to enhance 
its robustness with respect to the q-Weibull-GRP log-likelihood problem.  
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