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1. INTRODUCTION 
 
 Risk based approach has been recommended as a preferred alternative for Integrity Management of 
Pipelines. For both onshore and subsea (or submarine) pipeline Integrity Management standards, 
managing the risk related to the pipeline system threats is essential for maintaining the integrity of the 
pipeline system. It is been recognized in the industry that proper management of the threats taking into 
account the probabilities of failure and the consequences of those events can result in an efficient tool to 
avoid early accidents and reduced time life, in addition to reducing risk associated costs, which can be 
very high for offshore assets. 
 Risk based Pipeline Integrity Management takes into account: 
 
 - Identification of threats and failure modes 
 - Estimation of probabilities of failure (PoF) 
 - Estimation of consequences of failure (CoF) 
 - Estimation of Risk level (PoF x CoF) 
 
 The condition of an existing asset consist of its complete history, starting from design, fabrication, 
commissioning, past operation conditions until the present time. One of the main questions is “how long 
the asset can be safely operated?”, the answer to it depends on estimating the future conditions and 
behavior of the individual sections of the asset. Numerical models have been developed to estimate 
corrosion rates, stresses in corroded components subject to internal pressure, loads in pipelines under free 
spans, etc.  However, most of those models are either prescriptive or follow empirical and semi-empirical 
approaches that may be valid only under specific conditions resulting in large uncertainties when 
extrapolating results in time.. Field inspection methods have also uncertainties and human error involved, 
both issues recognized by service companies and operators. Data from other similar assets can be used, 
but with limitations construction-related practices, environmental and operating conditions may be 
significantly different. Hence, risk estimations represented by a single number do not convey the large 
uncertainties that are involved in those calculations. Managing uncertainty is a key element in the 
assessment of the integrity of industrial assets.  
 
Bayesian networks have demonstrated to be a feasible approach to assess corrosion threats in a pipeline 
(as referred in section 3 below). Bayesian network is a mathematical approach based on Bayes theorem 
that represents that cause-consequence relationship that exists between the variables of a complex system 
in the form of conditional probabilities. The Bayesian network approach integrates various sources of 
knowledge (models, field data and subject matter expert opinion) into one framework. The probabilistic 
nature of Bayesian networks allows the inclusion of the uncertainties associated from each variable.  
 
 
 



   
   

2. INTEGRITY MANAGEMENT OF PIPELINES 
 
 Bayesian Networks can be used for the assessment of probability of events that can lead to pipeline 
failure and how this information can be used in an Integrity Management perspective. Pipelines are 
subject to many different threats, as described in Pipeline Integrity management documents and standards 
[1-3]. It is usual to consider that pipeline integrity is associated with structural/containment functions, as 
stated in DNV RP-F116 (2015). Hence, the threats related to those functions can be assessed in terms of 
the influence in the pipeline integrity condition based on the significance of the Probability of Failure 
(PoF) associated to the mentioned functions, as a component of the total Risk. In a quantitative approach 
for Risk Assessment, the methodology for assessing the PoF can be more or less representative of the real 
situation, depending on the approach used and the reliability of the information used. 
Integrity Management starts during early stages of design, and shall follow the project until abandonment 
(inclusive). After the takeover of the project by operations, Integrity must be maintained during 
operational phase. Risk Based Integrity Management has been intensively used, and is a well-accepted 
method in many industries. Hence, managing integrity is normally closely related to managing risk. Risk 
can be defined by its components Probability of Failure and Consequence of Failure. In this paper, a 
probabilistic approach for defining the PoF component of Risk is presented, where Bayesian Network 
approach is presented. This approach has the characteristic of permitting the use of any existing 
information as a valid input to PoF, and take into account the uncertainties and beliefs associated with the 
existing knowledge, model or data available. 
 
 
3. THE BAYESIAN NETWORK MODELLING APPROACH 
  
3.1 The Bayes Theorem 

The relationship between frequency and probability is defined by the well-known Bernoulli’s limit 
theorem: 
 

p(|f(x) – p(x)|>Ɛ)→0 as N→∞        (1) 
 
In this equation, the frequency, f(x), of a population of data approaches the probability, p(x), of that 

same data as the number of trials approaches infinity. Stated another way, frequency is a measurable 
quantity based on repeated observations, whereas probability represents the degree of belief or confidence 
in the measured frequency, also referred to as probability of frequency by Kaplan and Garrick [4]. Some 
authors refer to probability as simply a degree of belief in an event. This view stems from the idea that not 
all phenomena can be repeated in a controlled manner to derive statistical distributions. This is especially 
true of complex systems. Therefore, probability can be assigned to the strength of an expert’s belief about 
an event and can then later be corrected using repeated observations. This is at the heart of Bayes theorem 
and it is often referred to as belief network. These two perspectives can be combined – where possible 
statistical distributions are derived through the use of mechanistic models that are in turn based on 
experimental data with their associated uncertainties, but we can also include direct probability 
distributions representing the degree of belief of an expert in a given observation. These two streams of 
probabilities are linked in a Bayesian network that can be updated through laboratory or field 
observations 

 The Bayes Theorem states that posterior probability of an event (i.e. probability of the event after 
an observation is made) is related to the prior probability of the event (i.e. before the observation is made) 
through the probability of observing the event and the conditional probability of observation given the 
event occurred, as given by Equation 2: 
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where P(Ai | B) is the posterior probability of an Event Ai given the observation B, P(Ai) is the prior 
probability of the event Ai before the observation B, and P(B | Ai) is called the likelihood function and is 
the probability of the observation B given that event Ai occurred. The denominator in Equation 2 is called 
the probability of observation and is the sum of all the conditional probabilities of B given events, A j 
multiplied by the probabilities of Aj. The prior and posterior probabilities can also be considered as 
“cause” and “consequence” of a process. The term “consequence” in this sense should not be confused 
with consequence of a risk model. It is strictly a relation between two events in a process, one leading to 
the other. An example would be the presence of water in a pipeline leading to corrosion. 

 Bayesian networks use Bayesian inference (Equation 2) on a larger scale. Bayesian networks 
allow calculating the probability of not one but numerous interconnected parameters. Bayesian networks 
are often represented graphically where many random variables are connected by cause-consequence 
dependencies. This approach is particularly useful to perform risk assessment of corrodible systems, 
because of the ability to consider a great number of events that can lead to failure. Since, Bayes' Theorem 
shows what is and isn't evidence and also describes the strength of the evidence, a succession of Bayesian 
inferences will provide the most probable scenarios leading to failure, quantify the certainty of the 
scenarios, and provide a mathematical framework to reduce uncertainties through observation (i.e. data 
gathering). The main limitation of Bayesian networks is that in order to solve the succession of Bayesian 
inferences numerically only directed acyclic graph can be used. In other words, the strength of the cause-
consequence relationships must be preserved and no feed-back loops are allowed between causes and 
consequences to alter the strength of these relationships. However, knowledge of a consequence can be 
used to update the probability of a cause without altering the strength of their relationship. The heart of 
the Bayesian network model is the derivation of the conditional probability tables or P(B | Aj) from 
fundamental models and subject matter experts. 

 Pipelines are exposed to a number of risk factors or threats, such as intrusion by third parties, 
fabrication defects, cyclic loading, and external and internal corrosion. The intrusion and fabrication-
related factors may be considered to be essentially time-invariant factors, although some parameters that 
affect intrusion probability (e.g. population density) change over time. The probabilities of these failure 
modes may be estimated from the probabilities (i.e. frequencies) of related factors, such as surrounding 
population centers, vehicle traffic, type of welding used to manufacture the pipeline, etc. The probabilities 
of time-dependent factors, corrosion, fatigue and stress corrosion cracking, have to be assessed using a 
number of models. The next section shows an example applied to internal corrosion. 

 

3.2 The Internal Corrosion Example 
 

The solution selected to manage and present the various events leading to pipeline failure in a 
graphical form is Bayesian network. Bayesian networks are probabilistic graphical models that encode 
probabilistic causal relationships between variables of interest. Therefore, every event shown in a 
Bayesian network is linked by cause-consequence relationships, additionally every relationship is 
quantified. Bayesian networks offer many advantages over other types of graphical models, which will be 
described later in the paper. 

 Figure 3 shows a high level example of a Bayesian network for internal corrosion damage 
assessment in pipelines [5]. In this model, events that lead directly or indirectly to corrosion damage and 
failure are linked using cause-consequence relationships. The model allows a relatively easy 
determination of the chain of events that could lead to pipeline failure. Although the network shown in 
Figure 3 is quite simple, it can become rather complex, hence the implementation of the model in a 
numerical application is recommended. In a real application, the main nodes could represent, for instance, 
uniform corrosion rate, localized corrosion rate, erosion rate, microbiologically influenced corrosion rate, 



   
   

all contributing to develop and grow a flaw size (depth and length) and resulting pipeline remaining 
strength or probability of failure. 

 

 
 

Figure 3. Sketch view of a basic network created for pipelines internal corrosion damage 
assessment. 

 
Data uncertainty is of major concern in every type of risk assessment. A model that can deal with 

data uncertainty is crucial for a good a reliable pipeline corrosion risk assessment. Data uncertainty is 
usually dealt with by using Monte Carlo simulations, however in order to effectively utilize the Monte 
Carlo method, it is necessary to have all models (e.g. flow, uniform corrosion, localized corrosion, 
erosion, microbiologically influenced corrosion, etc.) run together in one single framework. Rarely all 
parameters that have an effect on corrosion are found in the same framework, which makes it difficult to 
carry the effect of data uncertainty from one model to the next. Bayesian networks do not have this 
problem. To illustrate this, a zoom on a real network for Internal Corrosion [6] is shown in Figure 4. This 
figure shows the part of the corrosion model that calculates the uninhibited corrosion rate (corrosion 
inhibition, flow and steel wettability are not shown here for simplicity reasons). First, the figure shows 
that each event is not represented by a number but a probability density function that describes the 
relative likelihood for each variable to take on any given value, and no state, no matter how unlikely, is 
overlooked. A red bar shows a node that has a certain state (e.g. in Figure 4, H2S concentration is known 
to be zero), blue bars show nodes with uncertain information (e.g. the temperature is known to be below 
60°C, but the exact value is unknown) and green bars show unknown variables (Fe2+ and O2 
concentrations are unknown, hence they are represented by flat distributions). Consequently, because of 
the uncertainty in the data, the uniform uninhibited corrosion rate is known with uncertainty. 

 



   
   

 
Figure 4. Detailed view of partial network showing influence of parameters (Temperature in 

Celsius, CO2 partial pressure in Bar, Fe2+ concentration in ppm, O2 in ppb, H2S in ppm) in the corrosion 
rate assessment (in mm/year). 

 
Some examples of the Bayesian calculation for Internal Corrosion of pipelines demonstrated in 

Figure 4 are shown in Tables 1 to 3, from software Hugin. In these tables the green bars represent 
unknown and the red bars represent known variables. There are not really any inputs and outputs in the 
conventional sense of modeling, but only known and unknown variables, where the known variables have 
an effect on the probability of the unknown variables. 

 In Table 1, all variables are unknown. The uniform uninhibited corrosion rate distribution is flat 
and the corrosion rate could be anything, as low as 0 and as high as 10 mm/year and higher. This should 
be expected as no inputs are known; however, this example demonstrates that the model can still run even 
with no data. 

Table 1. Calculation with unknown data 

 
 
In Table 2, all input parameters are known, hence the uniform uninhibited corrosion rate is also 

known with a high degree of certainty. 
 

Table 2. Calculation with all known data 

 
 

Table 3 shows more realistic conditions where some data is known (i.e. temperature, CO2 partial 
pressure and pH), some data is uncertain (O2 concentration is lower than 100ppb, H2S concentration is 

C % Bar % ppm % ppb % ppm %  - % mm/year %

20-40 25 0-0.1 25 0-10 33 0-10 25 0-10 25 4-5 25 0-0.01 3

40-60 25 0.1-1 25 10-50 33 10-100 25 10-100 25 5-6 25 0.01-0.1 15

60-80 25 1-10 25 50-100 33 100-1000 25 100-1000 25 6-7 25 0.1-1 43

80-100 25 10-100 25 1000-10000 25 1000-10000 25 7-8 25 1-2 18

2-5 8

5-10 4

>10 9

Cor. RateT CO2 Fe2+ O2 H2S pH

C % Bar % ppm % ppb % ppm %  - % mm/year %

20-40 100 0-0.1 0 0-10 100 0-10 0 0-10 0 4-5 0 0-0.01 0

40-60 0 0.1-1 0 10-50 0 10-100 100 10-100 0 5-6 100 0.01-0.1 0

60-80 0 1-10 100 50-100 0 100-1000 0 100-1000 0 6-7 0 0.1-1 99.5

80-100 0 10-100 0 1000-10000 0 1000-10000 100 7-8 0 1-2 0.5

2-5 0

5-10 0

>10 0

T CO2 Fe2+ O2 H2S pH Cor. Rate



   
   

lower than 100ppm, but the exact values for O2 and H2S are unknown), and some data is completely 
unknown (Fe2+ concentration). Consequently the uniform uninhibited corrosion rate is known with 
uncertainty and is probably between 0.1 and 1 mm/year but could be as high as 5-10 mm/year with 7% 
probability. 

 
Table 3. Combination of known (red), uncertain (blue) and unknown green) data 

 
 
Depending on the rest of the model (i.e. corrosion inhibition, flow, wettability of the steel) this high 

uninhibited corrosion rate value might be acceptable or not. If the high uniform uninhibited corrosion rate 
is unacceptable, for example because of the lack of corrosion inhibition or the presence of high water‒cut, 
then a sensitivity analysis on the model can help prioritize what data should be gathered in order to reduce 
the uncertainty on the uniform uninhibited corrosion rate. It should be noted that such sensitivity analysis 
is not generic, because the sensitivity analysis will take into account what is known of the system, when a 
parameter changes, so do the results of the sensitivity analysis. 

 As mentioned above, it is unlikely that every aspect of corrosion can be modeled with a high 
degree of accuracy. Thus, a methodology that assesses corrosion damage would have to depend on many 
different models such that uncertainties in the corrosion prediction can reduce. Because models (i.e. 
knowledge) improve and modeling software changes over time, the creation of one unified corrosion 
threat assessment methodology would require dynamic tools that can be easily updated. Bayesian 
networks provide an answer to both problems by: 

a. combining different sources of knowledge (different models & different software products), and 
b. creating a methodology that can be easily updated as new knowledge becomes available. 
 

Similar approach can be applied also to external corrosion [7] and other threats like stress corrosion 
cracking, geological and geotechnical events and third party intervention. 

 
3.3 Information Sources 

 
The Bayesian Network approach can be applied with different sources of information.  
 
Physics based models 
One of the most reliable ways to derive conditional probability tables is to use fully tested and 

recognized physics based models because these represent our understanding of the underlying phenomena 
and recognized models can be assumed to have been peer-tested. Physics based models (such as 
multiphase-flow or corrosion rate models in the following examples) are run multiple times over all sets 
of possible inputs in a Monte Carlo fashion. It is recognized that a specific phenomenon, such as CO2 
corrosion, may be represented by a number of models that may produce different calculated results for the 
same input parameters. In the Bayesian network construct, multiple models can be run multiple times and 
results can be combined in the conditional probability tables, using weighting functions for different 
models. This is very useful as trust is increased in the areas where all models provide the same values and 
justified doubt emerges in the areas where models diverge. If the veracity of different models for the same 
phenomenon is not known a priori, equal weighting functions can be applied that can then be corrected 
later through observations. 

C % Bar % ppm % ppb % ppm %  - % mm/year %

20-40 100 0-0.1 0 0-10 33 0-10 50 0-10 50 4-5 0 0-0.01 0

40-60 0 0.1-1 0 10-50 33 10-100 50 10-100 50 5-6 100 0.01-0.1 0

60-80 0 1-10 100 50-100 33 100-1000 0 100-1000 0 6-7 0 0.1-1 45

80-100 0 10-100 0 1000-10000 0 1000-10000 0 7-8 0 1-2 21

2-5 27

5-10 7

>10 0

T CO2 Fe2+ O2 H2S pH Cor. Rate



   
   

 
Expert’s knowledge 
 Quantification of the causal relationships is possible using expert's knowledge. This is necessary 

as there are many mechanisms of pipeline failure with no reliable mechanistic model. Stress-corrosion 
cracking and microbiologically influenced corrosion are examples of complex phenomena where many 
overlapping mechanisms may operate and a detailed model of the complete phenomenon is difficult to 
achieve. Yet, some experts understand parts of these problems quite well and this knowledge should not 
be discarded because it is difficult to quantify. This knowledge is added scenario by scenario in usually 
smaller conditional probability tables. Conditional probability tables derived from expert's knowledge 
have larger uncertainties and this uncertainty is carried by the Bayesian network model all the way to the 
final results. 

 
Field data 
 Field data can be used to populate the conditional probability tables. Every instance for each input 

set is counted and used to generate columns of the conditional probability tables. Using field data has 
many drawbacks. First, field data usually does not cover all possible sets of input parameters and when it 
does some combination of inputs have many measurements while others have few. Second, field data 
varies from field to field and estimation of the uncertainties associated to the data is difficult. And most 
importantly, while field experts are easily challenged, field data is rarely put into context, providing a 
false sense of security. 

 
 If an analytical or a numerical model is available to describe a phenomenon, then probabilistic 

analysis of this phenomenon can be performed using distributed inputs in to this model. If several such 
phenomena exist and they can be integrated into a numerical model, probabilistic analysis can be 
conducted by repeatedly running such an integrated model using a probabilistic driver, such as the Monte 
Carlo method, each run being called a realization. In such a case, the Bayesian method provides no 
advantage, and could indeed be less rigorous. However, in complex systems where different phenomena 
are connected in diverse ways and cannot be described by an integrated model, Bayesian networks 
provide a rigorous mathematical method to combine different types of probabilistic knowledge in order to 
make informed decisions. The other major advantage of Bayesian models is the reversibility of the 
Bayesian inference as shown in Equation. 2. Unlike other models where there are inputs and outputs, in 
Bayesian models there are only unknown and known probabilities. If two events are linked, then knowing 
the probability of one event improves the knowledge of the probability of the other event. Finally, 
Bayesian networks are graphical models, making the visualization of complex chains of events easy to 
understand, unveiling the probable mechanisms of failure. A Bayesian network model developed for 
corrosion helps the user understand corrosion phenomena and implicitly suggests ways to control or 
combat corrosion. 
 
 
4. CONCLUSIONS 
 
 Uncertainties management is a key aspect in an integrity management program. Uncertain data and 
missing information can impose a large error and misinterpretation when assessing the risk of a pipeline. 
 Bayesian networks provide a mathematical framework to extract knowledge form different models 
under the form of conditional probability tables. The combined models can be used to provide more 
reliable information than a single model would. 
 Bayesian networks are particularly well suited to deal with uncertainty. They do not have inputs 
and outputs but known and unknown parameters. Known parameters combined with the knowledge 
contained in the conditional probability tables can help deduce the state of the unknown parameters. 



   
   

 Another great advantage of Bayesian networks is their ability to incorporate new evidence (new 
knowledge), such as the results of a new pipeline inspection, and reassess the forecast results taking into 
account the new evidence. This ability represents a key factor to the managers in charge of the pipeline 
integrity as they can update their integrity program and actions always based on the most recent 
knowledge of the conditions of the pipeline. 
 One situation where Bayesian networks can be advantageous is for unpiggable pipelines, where the 
lack of inspection data can be compensated by other information available. 
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