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1. INTRODUCTION 
 
 Oil and gas producers continue to push offshore projects into the arduous and colder Arctic 
frontiers, driven primarily by the need to secure future oil and gas reserves [1]. However, offshore Arctic 
projects have a high degree of technical and social complexity. The technological challenges of drilling at 
remote location coupled with the extreme weather conditions makes the operation of drilling waste 
handling in this environment very demanding and risky [2]. Furthermore, due to the sensitive 
environment to disruption, on one hand, but harsh and unforgiving on the other, the environmental 
impacts as a result of inappropriate handling of the drilling waste can take longer to heal and cost more 
to remediate [3, 4].  
 The competence to reduce the adverse impacts of unwanted events during the drilling waste 
handling activities depends in part upon the effectiveness of our rigorous safety plan and clear 
understanding of the effect of the Arctic operating environment on the system [5]. In addition, to ensure 
an environmentally sound and economically feasible waste handling system, identification and 
assessment of the peculiar Arctic risk influencing factors (RIF’s) play a crucial role [6, 7]. The main goal 
is to manage the major risk elements related to the drilling waste handling activities and prevent the 
pollution of the Arctic marine environment. The other focus is to assess whether or not the level of risk is 
acceptable (tolerable) as per the statutory legislations and the company risk acceptance criteria. 
 The application of Bayesian Network (BN) to risk assessment and decision-making in the offshore 
operation, are getting popularity and have been discussed in several literatures [8]. For instance, Aven and 
Rettedal [9] proposed a "fully Bayesian approach" for quantifying the major risks in offshore industry, 
with a focus on observable quantities and use of subjective probabilities. For assessing and quantifying 
ecological risks in catchment management, Pollino, et al. [10] developed a methodology by using 
parameterization and evaluation of a Bayesian network. Lee and Lee [11] proposed probabilistic risk 
assessment model, for evaluating waste disposal options, by connecting the results of probabilistic 
inference from the Bayesian network with the consequence evaluation.   
 However, most of the BN based risk models used in offshore industries are developed for off-the-
shelf systems, for non-Arctic offshore operation. Further, the available models have been mainly focused 
in identifying the hazard and quantifying the risk and lack particularly the consideration of the effect of 
the operating environment on the risk profile. This is considered as a big drawback, especially in a 
complex operational environment such as the Arctic region [12, 13]. Typically, the hazards and risks 
associated with Arctic offshore drilling waste handling operations will differ vastly depending on the ice 
conditions, negative sea and air temperature, and factors affecting visibility such as heavy fog, blowing 
snow, and lengthy period of darkness [2, 5, 7, 14]. In the Barents Sea – part of the Norwegian Arctic, 
weather related factors are estimated to cause more than 90 percent of fatal accidents during crane lifting, 
including drilling waste container lifting [15]. Further, in some areas of the Arctic  region, environmental 
and climatic factors causes nearly 65 – 70 percent of extra costs during drilling and drilling waste 



   
   
handling activities [16]. Hence, offshore drilling waste handling strategies, in the hostile Arctic region, 
must take account of the unique risks due to icing, ice loading, remoteness, very low temperatures, wind-
chill effects, and etc., in addition to the ‘conventional’ or ‘tolerable’ risks [1, 7, 13].  
 Hence, to consider the complex and fast-changing nature of the Arctic during risk assessment, this 
paper proposes a Bayesian Network based risk model (BN-B-RM) for Arctic drilling waste handling 
practices. Bayesian belief networks are particularly useful in risk analysis as they do not require complete 
knowledge of the relation between causes and effects [8]. The paper seeks to determine the probabilities 
of the potential hazards, risks, and consequences of the unwanted events by considering the peculiar 
Arctic risk influencing factors (RIF’s) such as snowstorms, atmospheric and sea spray icing, negative air 
and sea temperature. The rest of the paper is organized as follows: Section 2 presents the basic concepts 
of static and hybrid Bayesian network. Section 3 investigates the unique Arctic risk influencing factors 
that affects the handling of drilling wastes in the Arctic region. Section 4 presents the proposed Bayesian 
Network based risk assessment model (BN-B-RM). Section 5 illustrates Arctic drilling waste handling 
scenario case study and Secion 6 provides the conclusion. 
 
 
2. STATIC AND HYBRID BAYESIAN NETWORK – BASIC CONCEPTS   
 
 Static Bayesian networks (BN) are a probabilistic graphical model consists of a qualitative part, a 
directed acyclic graph (DAG), where the nodes represent random variables and a quantitative part, a set of 
conditional probability functions [17]. The nodes can be discrete or continuous, and may or may not be 
observable and the arcs (from parent to child) represent the conditional dependencies or the cause-effect 
relationships among the variables [17]. Parent nodes are nodes with links pointing towards the child 
nodes. Nodes that are not connected represent variables which are conditionally independent of each other. 
Further, when BN contain discrete and continuous variables (nodes) generally it is called a hybrid 
Bayesian network (HBN). 

Figure 1 shows the basic qualitative part of a Bayesian network, for Arctic drilling waste handling 
practices, and illustrates the conditional independencies and dependencies of the main random variables. 
The variables considered, in this paper, are: risk influencing factors (RIF’s), drilling waste handling 
systems or component, health risks, safety risks, and environmental risks. For instance, a shale shaker (a 
component of waste handling system) ceases to function or fail when there is freezing temperature and ice 
accretions (which are the RIF’s). Then, the shale shaker failure may lead to drilling waste chemical spills 
(i.e. environmental hazards) and may have many different occupational hazards, i.e. health and safety 
hazards.  

 

 

Figure 1. Basic Bayesian Network representing conditional dependencies 



   
   
- Risk influencing factors (designated as Z) includes: negative air and sea temperature, severe 

snowstorms, wind-chill effect, atmospheric and sea spray icing, icicles, visibility reducing factors, and 
polar lows. 

- Drilling waste handling system (W) comprises offshore discharge, offshore re-injection, and skip- and 
ship. 

- Health risk (H) is a chance or probability that a waste handling worker will experience health effect due 
to direct and indirect effect of RIF’s. 

- Safety risk (S) is a likelihood that a waste handling personnel experience physical injures due to RIF’s 
effect and system failures. 

- Environmental risk (E) is a chance or likelihood of the pollution of the Arctic marine environment 
because of accident. Mainly, due to indirect effect of the RIF’s. 

 

The quantitative part of a Bayesian network structure can be represented as a product of conditional 
distribution of each node iX given its parents nodes )( iXparents . Each node is described by the 

conditional probability function of that variable. Then, the joint probability distributions, considering 
discrete variable, can generally be expressed as:          
 

        (1) 

Where: 

� { })(|Pr ii XparentsX is the conditional distribution mass function of node iX .  

In general, for the case of drilling waste handling operations, the probability of waste handling 
system or component failure (W) (i.e. a child node) is conditionally dependent on the RIF’s (Z) (i.e. a 
parent node). In addition, the probability of the health risks (H), the safety risks (S) and the environmental 
risks (E) are conditionally independent to each other, given the system or component failures (W) and the 
RIF’s (Z). However, this doesn’t mean that H, S and E are totally independent. Hence, for the given static 
BN structure (i.e. Figure 1), assuming that all variables are discrete, the joint probability function, as a 
product of conditional probabilities then can be expressed as: 

)|()|()|()|()(),,,,( WEPWSPWHPZWPZPESHWZP =                          (2) 

where:  

� P(Z) is the marginal probability function of Z, and  
� P(W|Z), P(H|W), P(S|W), and P(E|W) are conditional probability function of W, H, S, and E, 

respectively.  A detailed explanation of the marginal and conditional probabilities is included in 
Section 4.  
 
 

3. RISK INFLUENCING FACTORS (RIFs) IN THE ARCTIC  
 

Aven [18]  defines risk influencing factors (RIF’s) as factors that potentially affect the barriers and 
barrier performance. In general term a barrier is a measure which is put in to prevent the release of a 
hazard or the occurrence of a top event once the hazard is released, and barriers may be physical or non- 
physical [6]. In the Arctic offshore dilling waste handling operations, the predominant RIF’s are the 
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climatic and environmental conditions. The predominant RIF’s in the Arctic region are identified and 
briefly discussed below.  
 
3.1 Negative Temperature  

Negative temperatures reduce the performance of drilling waste handling system, ranging from 
primary shale shaker and mud cleaner to screw conveyor. In addition, for most drilling activity in the 
Arctic region, wells are recommended to be drilled with water-based drilling fluids. To meet the drilling-
performance demands, thus the water must be kept from freezing or the system ceases to function [19]. In 
worst case, the primary shale shaker, mud cleaner, screw conveyor, and the vacuum pump can be 
destroyed by the pressure of ice expansion. Moreover, the viscosity of water increases significantly as 
temperature falls. Higher viscosity mean slower flow and mixing rates within the waste handling systems, 
and consequently increased the overall energy demand [19].   
 
3.2 Wind-chill effect  

The wind-chill effect is the perceived decrease in air temperature felt by the body on exposed skin 
due to the flow of air [13]. In general, the effect of the wind-chill will increase with high wind speed and 
in the worst case it can be expected to have outdoor working restrictions, for waste handling personnel, 
for some specified period of time [20]. Lengthy period of exposure to cold wind without adequate 
protection can lead frostbite, hypothermia, and in worst case it can cause freezing to death [20].  

 
3.3 Icing, Snowstorm, Icicles and Polar lows 
 

Figure 2 illustrates the typical icing phenomena in the Arctic regions. Icing has various potential 
hazards, such as slipping hazards and disabling winches and cranes by locking cables in continuous hard 
ice [21]. These locking effects on the crane have high-level potential hazards, and can significantly affect 
the waste handling activities. Further, the falling ice can cause fractures, bruises, lacerations, dislocations, 
as well as permanent injuries for personnel’s working at the waste handling site [22]. 

 

 
Figure 2. Typical icing phenomena in Arctic (Photo courtesy of ice engineering solutions) 

Moreover, significant amount of snowstorms restricts access to drilling waste handling equipment 
and instruments and hinders the process of collecting, transporting, and treatment of the drilling waste. 
Further, working in the snowstorm has the potential to cause an increased incidences and injuries, such as 
hypothermia, infections from frost bite, and increases the risk to persons with known asthma or 
cardiovascular disease [20]. 

Furthermore, icicles can pose potential safety hazards for personnel’s and structural hazards for 
waste handling equipment’s. An icicle is a spike of ice formed when water dripping or falling from an 
object freezes; and it normally has a very sharp edge. When icicles falls as a result of change in air 



   
   
temperature or heavy ice deposit, it can cause serious injury for personnel involved in the waste handling 
activities or damages the near-by waste handling equipment’s. 

Polar lows  are the other RIF and generally they are a phenomenon formed when cold air flow over 
warmer water and leads to an atmospheric instability [23]. In the Barents Sea, polar lows occur frequently 
up to 15 times monthly and generally in the period from October to May [23]. They are known to possess 
heavy snowstorms and icing as their typical feature. These typical characteristics are source of various 
potential hazards, during waste handling activities. 

 
3.4 Visibility reducing factors 
 

These factors include heavy fog, blowing snow, lengthy period of darkness; and they are the main 
contributors for the poor visibility during offshore waste handling activities in the Barents Sea. Poor 
visibility are the biggest contributors to the overall risk of fatal accidents in the Arctic offshore operations 
[24].  

 
 
4. BAYESIAN NETWORK BASED RISK ASSESSMENT MODEL (BN-B- RM) 
 
 A step-by-step approach for implementing the Bayesian network based risk assessment, for Arctic 
drilling waste handling operations, is provided in Figure 2. The proposed methodology has 7-steps and it 
starts with identifying the predominant risk influencing factors (RIF’s) under Arctic conditions.  

 
4.1  Step 1: Identify the peculiar risk influencing factors (RIFs) in the Arctic 

region  
 
 The purpose of this step is to study and investigate the effect of the predominant RIF’s, which are 
induced by the unique Arctic operating environment, on the drilling waste handling operations. Further, 
the interaction of the RIF’s, the dependability of these factors on various variables, their negative synergy 
effect on the drilling waste handling systems needs to be assessed and specified [21, 25, 26]. 
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Figure 2. Proposed Bayesian network based risk assessment model (BN-B-RM) for Arctic drilling waste 

handling operations. 
 
4.2  Step 2: Define the drilling waste handling system    

 
 In this step, suitable waste handling system should be defined, by considering the operating 
environment of the Arctic region. In general, the most common drilling waste handling systems in the 
Arctic region are: i) offshore discharge (i.e. treating and discharging the drilling wastes to the ocean (sea)), 
ii) offshore re-injection (i.e. re-injecting the drilling waste offshore both in a dedicated reinjection well 
and/or in a dry (dead) well), and iii) skip- and ship (i.e. hauling the drilling waste back to shore for further 
treatment and disposal) [4]. 
 

4.3 Step 3: Construct the static BN or Hybrid BN 
 

The aim of this step is to build the static BN, which comprises only discrete or continuous 
variables, or hybrid BN, consist of both discrete and continuous variables. When deciding on the structure 
of the network, the key is to focus on the causal relationships between the main variables [27].  

 

4.4 Step 4: Discrete vs continuous variables  
 

After specifying the BN or HBN structure, then the quantification of the relationships between the 
connected nodes (variables) is the next step.   

Step 4.1: Discrete variables (nodes): A discrete variable (node) is one with a well-defined finite set 
of possible values, called states [28]. For instance, icing (one of the RIF’s), taking zero for the absence or 
one for the presence, during the drilling waste handling operations, can be regarded as a discrete variable. 
When a variable is discrete, then the CPT’s (conditional probability tables) needs to be assigned. That 
means, for each particular discrete node, all possible combinations of values of those parent nodes needs 



   
   
to be observed; and such combination is called instantiation of the parent [27]. In general, for a Boolean 
network, a variable with n parents requires a CPT with 12+n  probabilities [27]. 

Step 4.2:  Continuous variables (nodes): A continuous node (variable) is one which can take on a 
value between any other two values, such as negative air and sea temperature [28]. In this step, for each 
continuous node, the conditional probability distributions (CPD’s), needs to be defined. Table I illustrates 
some popular CPD’s which can be used to define the continuous node.  Sometimes you want to treat a 
continuous variable as a discrete variable. In such situations, it is possible to break up the total range of 
the continuous variable into a number of intervals, and commonly this process is known as discretizing 
the variable [28]. 

 
Table I. Example of CPD’s, adopted from Murphy [29] 

Child/Parent Discrete Continuous  
Discrete  Tabular, noisy-OR, decision tree Probit, logistic, softmax 
Continuous Conditional Gaussian Linear Gaussian 

 
 

4.5 Step 5: Select prior probability function (distribution) for the selected system 
or component  

 
Once the drilling waste handling system or component is defined, then a prior probability function 

or distribution needs to be asserted. This function is the representation of the failure rate of the waste 
handling system or component; and failure rate is the measure of frequency of system or component 
failure. The prior function describes the probability of n or fewer failures during a time interval of (0, t), 
when all RIF’s are equal to zero or absent (i.e. ‘‘normal’’ operating environment), during waste handling 
operations. For instance, by assuming that the components fail according to a Poisson process, the 
probability of n or fewer failures, can be estimated by the following equation [30]: 

 
        (3) 

 

where: 
� P (W) is the probability of n or fewer failures, and λ is a failure rate of the waste handling 

component. 
 

4.6 Step 6: Construct the likelihood function, based on the system or component 
failure rate data   

 
 After defining the prior probability function and observing the RIF’s data, then the likelihood 
function, has to be constructed. Likelihood function generally is the joint probability function (JPF) and it 
can be expressed as a product of conditional probabilities [31]. Hence, by considering discrete time-
independent and time-dependent RIF’s, the likelihood function of the system failure, based on Glickman 
and van Dyk [31] approach, can be expressed as follows: 
 

         (4) 
 
where: 

� rzz ,...1 is a set of time-independent RIF’s, and  

� )(),...(1 tztz m is a set of time-dependent RIF’s.  
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Then, by grouping the RIF’s into vectors of size R+M, Equation (4), can be re-written as follows:  
    
                      (5) 
 
where: 

� n is a vector of size R+M.  
 
By following the same approach, the likelihood function of the health, safety, and environmental risk can 
be estimated. Taking the environmental risk as an example and by considering the discrete risk variables, 
likelihood function of the environmental risk can be expressed as:   
    

         (6) 
 
where: 

� E is representing the environmental risks, as a result of the waste handling system failure. The 
same approach can be applied to determine the health and safety risks. 

 
4.7 Step 7: Probabilistic inference/ computing the posterior distribution of 

variables    
 
 Probabilistic inference is the task of computing the probability of each node in BN, according to the 
most recent RIF’s to provide posterior probabilities. The posterior distribution combines prior RIF’s 
information with actual observed data from weather forecasting to predict the future potential hazards 
and/or risks. That means the current information about the RIF’s will be used to continuously update the 
potential hazards relating to the health, safety, and environment. Simply, the distribution describes the 
probability that the waste handling system will fail, given the predominant RIF’s has observed. The 
posterior distribution of the system or component failure, considering discrete RIF’s (variables), based on 
Glickman and van Dyk [31] approach, can be expressed as:  
 
                       (7) 
 
 

By substituting the likelihood function and applying Bayes’ theorem, Equation (7) can be re-
written as:  
 

         (8) 
 
 

To solve, Equation (7) and (8), we can first multiply the prior distribution by the likelihood, and 
then determine the marginal constant that forces the expression to integrate to 1 [31].  

As we did above, by following the same approach and considering the discrete risk variables, the 
posterior probabilities of the environmental risk can be expressed as:  
    

         (9) 
 

 
Afterwards, by employing the likelihood function, Equation (9) can be re-written as: 

 
       (10) 
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Sometimes, it is demanding and cumbersome to collect failure rate data in the Arctic. Such kind 

of situations can hinder selecting the prior probabilities and constructing the likelihood function. Thus, 
the other option, in the case of data shortage, is to make use of inference algorithms. 
 
 
5. AN ILLUSTRATIVE CASE STUDY  
 
 To illustrate the proposed model, a shale shaker, which is one of the key components of the 
offshore discharge waste handling system, is chosen to estimate its conditional probability of failure due 
to the predominant Arctic RIF’s and predict the probability of the environmental risks, in the case of 
failure of the shale shaker. In general, offshore discharge is a series of pre-treatment of drilling fluid and 
cutting, and finally disposing the waste into the sea (ocean). As part of these treatment process, the fluid 
and suspended cuttings are processed on the rig through screens called “shale shakers” to maximize 
recovery of the mud [32]. The failure of the shale shaker may then lead to stoppage of the overall system 
and waste handling process. Hence, to estimate the probabilities of the potential risks of the failure of the 
shale shaker, the proposed approach is implemented.  
 Simply, our main objective (inquiry) is to determine the unconditional probability of the 
environmental risk. The main assumptions during estimation of probabilities are: a year-round operational 
window and there is no winterization or enclosure of the waste handling components to protect the 
vulnerable areas, and the system is installed in the drilling rig, which operates in the Barents Sea, northern 
Norway. The system failures due to other factors, such as failures due to maintenance error, design defect, 
and operating procedures are ignored.  
 The first step is to investigate and identify the predominant RIF’s in the Barents Sea. The 
recognized RIFs are sorted in monthly order (i.e. from January to December) and a sample of the data is 
shown in Table II. These RIFs (except the temperature) were scored zero or one, for the absence or 
presence during drilling waste handling activities. The minimum temperature (ºC) data of the study were 
collected over a period of 10 years (from 2005 – 2014) on the monthly basis, from Norwegian 
Meteorological Institute database. The temperatures are observed in the Hopen Island weather station, 
located at 76º33’N and 25º7’E, northern Norway. Figure 4 shows the monthly minimum temperature 
profile. 
 

Table II. The predominant risk influencing factors (RIF’s) in the Barents Sea 

Month 
Air 

temperature 
(ºC), Z1 

Snowstorm ,
Z2 

Wind-chill 
effect, Z3 

Icing  Icicles ,
Z5 

Visibility 
reducing 
factors, Z6 

Polar 
lows ,Z7 Sea spray, Z4A Atmospheric, Z4B 

January -14.2 1 1 1 1 1 1 1 
February -11.2 1 1 1 1 1 1 1 
March -14.6 1 1 1 1 0 1 1 
April -12.4 1 1 1 1 0 1 1 
May -3.0 1 1 1 1 0 0 1 
June 0.0 1 1 1 1 0 0 0 
July 2.2 0 1 0 0 0 0 0 
August 2.7 0 1 0 0 0 0 0 
September 1.5 1 1 0 0 0 0 0 
October -2.6 1 1 1 1 0 1 1 
November -7.0 1 1 1 1 1 1 1 
December -10.1 1 1 1 1 1 1 1 



   
   

 
Figure 4. The monthly minimum temperature profile 

 The second step is to define the drilling waste handling system or component. As discussed above, 
the probability of failure of the shale shakers under Arctic environment will be analysed. In practice, there 
are two series of shale shakers – primary and secondary, installed in the rig. The primary shakers use 
coarse screens to remove only the larger drilling cuttings; and secondary shakers use fine mesh screens to 
remove much smaller particles [33]. For simplification, only primary shakers are considered in our case 
study. 
  

 
Figure 5.  The original HBN fragment  

 
The third step is to construct the BN structure. Figure 5 illustrates the original HBN fragment 

considering the predominant RIF’s, the waste handling component (i.e. the shale shaker), and the 
potential environmental risks – when the shale shaker ceased to function. To simplify estimation of the 
probabilities, the original HBN is abridged and shown in Figure 6. Atmospheric icing, as a discrete RIF, 
and air temperature, as a continuous RIF, are considered in the abridged HBN. In addition, marine 
ecosystem damage is considered as one of the main environmental risks, and is included in the HBN.  
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Figure 6. A hybrid Bayesian network 

 
  The fourth step is to define the state of the nodes (variables) and assign the CPT’s. The discrete 
node, which is atmospheric icing (Z4), is a Boolean node, representing true (1) or false (0) alternatives. 
Simply, true/ false means presence/absence of the atmospheric icing, during that specific observation 
period. Since the atmospheric icing (Z4) and air temperature (Z1) are root nodes (i.e. node without parents) 
marginal probabilities need to be assigned. To estimate the marginal probabilities of Z4, for each month, a 
direct elicitation technique [27] is considered, where an expert provides a number, such as the probability 
of observing Z4  in the month of January is 0.90. In addition, for simplification, the continuous node, 
which is air temperature (Z1), is discretized, and take the values [Low (0 to -10ºC), Very Low (<-10ºC), 
and Medium (≥ 0.1 ºC)]. Then, to determine the probabilities that the Z1 will be low, P(Z1=L), very low, 
P(Z1=VL) and medium, P(Z1=M), the raw temperature data are used as an input into a MATLAB 
probability estimation command. Afterwards, marginal probabilities tables (MPT) are assigned. 
 Further, the other discrete nodes – the shale shaker (W) and marine ecosystem damage (E), are also 
considered as a Boolean node, representing two states. The shale shaker states are failed (T) or not failed 
(F); and for marine ecosystem damage, not acceptable (T) or acceptable (F). Thereafter, a CPT has been 
assigned using a direct elicitation technique. That means the CPT takes the following possible joint 
values, for each month:  

 

                       (11) 

 

For instance, ),|( 41 LZTZTWP === describes the probability that the shale shaker will fail 
given icing condition and low temperature. The MPT and CPT results are presented in Table III.  

To proceed with step 5 and 6, failure rate data need to be available. However, in the Arctic region, 
there is a shortage of valid failure rate data [12, 13]. Hence, in the case of shortage of data, the other 
option is to make use of inference algorithms. As mentioned above, our inquiry is to get the posterior 
probability of environmental risk, P (E), i.e. the probability of environmental risk being not acceptable. 
Then, to determine, P(E) the following inference algorithm can be used:  

       (12) 

 
Table III. MPT for icing & air temperature and CPT for system failure and marine ecosystem damage 
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Marginal probabilities             

P(Z4=T) 0.90 0.90 0.90 0.80 0.80 0.50 0.01 0.01 0.01 0.85 0.95 0.95 

P(Z4=F) 0.10 0.10 0.10 0.20 0.20 0.50 0.99 0.99 0.99 0.15 0.05 0.05 

P(Z1=L) 0.80 0.90 0.40 0.80 0.80 0.10 0.10 0.10 0.10 0.8 0.85 0.90 

P(Z1=VL) 0.20 0.10 0.60 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.15 0.10 

P(Z1=M) 0.00 0.00 0.00 0.00 0.00 0.90 0.90 0.90 0.90 0.20 0.00 0.00 

Conditional probabilities             

P(W=T|Z4=T, Z1=L) 0.85 0.85 0.60 0.65 0.65 0.35 0.05 0.05 0.05 0.70 0.80 0.85 

P(W=F|Z4=T, Z1=L) 0.15 0.15 0.40 0.35 0.35 0.65 0.95 0.95 0.95 0.30 0.20 0.15 

P(W=T|Z4=T, Z1=VL) 0.55 0.40 0.85 0.50 0.50 0.25 0.05 0.05 0.05 0.50 0.30 0.30 

P(W=F|Z4=T, Z1=VL) 0.45 0.60 0.15 0.50 0.50 0.75 0.95 0.95 0.95 0.50 0.70 0.70 

P(W=T|Z4=T, Z1=M) 0.40 0.40 0.40 0.35 0.35 0.30 0.01 0.01 0.01 0.35 0.40 0.40 

P(W=F|Z4=T, Z1=M) 0.60 0.60 0.60 0.65 0.65 0.70 0.99 0.99 0.99 0.65 0.60 0.60 

P(W=T|Z4=F, Z1=L) 0.35 0.40 0.15 0.30 0.30 0.05 0.05 0.05 0.05 0.15 0.30 0.30 

P(W=F|Z4=F, Z1=L) 0.65 0.60 0.85 0.70 0.70 0.95 0.95 0.95 0.95 0.85 0.70 0.70 

P(W=T|Z4=F, Z1=VL) 0.15 0.05 0.40 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.15 0.10 

P(W=F|Z4=F, Z1=VL) 0.85 0.95 0.60 0.80 0.80 1.00 1.00 1.00 1.00 1.00 0.85 0.90 

P(W=T|Z4=F, Z1=M) 0.05 0.05 0.05 0.05 0.05 0.01 0.01 0.01 0.01 0.10 0.05 0.05 

P(W=F|Z4=F, Z1=M) 0.95 0.95 0.95 0.95 0.95 0.99 0.99 0.99 0.99 0.90 0.95 0.95 

P(E=T|W=T) 0.47 0.43 0.49 0.41 0.41 0.19 0.03 0.03 0.03 0.36 0.40 0.40 

P(E=F|W=T) 0.53 0.57 0.51 0.59 0.59 0.81 0.97 0.97 0.97 0.64 0.60 0.60 

 
Table IV presents the estimated posterior probability of environmental risk, for each month. The 

maximum environmental risk, i.e. the worst marine ecosystem damage can be anticipated during the 
month of January to March with P(E) equals to 0.35. That means during these months, the probability of 
system (shale shaker) failure will be higher due to the high probability of icing formation and low and 
very low temperature conditions. Thus, the system failure consequently leads to higher environmental 
risks. Figure 7 further illustrates the posterior environmental risks (marine ecosystem damage) for each 
operating months. For instance, P1(E), for the month of January, can be calculated as follows (note that 
the MP and CP can be read from Table III): 

       (13) 

       (14) 

 
 
 
 

Table IV. Posterior environmental risk probabilities 
 Month Jan. Feb. Mar.  Apr.  May Jun. Jul. Aug. Sep.  Oct. Nov. Dec. 

U
nc

on
di

tio
na

l 
pr

ob
. 

P1(E) 0.29 0.30 0.11 0.17 0.17 0.00 0.00 0.00 0.00 0.17 0.26 0.29 

P2(E) 0.05 0.02 0.22 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.01 

P3(E) 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.00 0.00 

P4(E) 0.01 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.01 

P5(E) 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

)(*)(*),|(*)|()( 14141 LZPTZPLZTZTWPTWTEPEP ========

29.090.0*80.0*85.0*47.0)(1 ==EP



   
   

P6(E) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P(E)= ∑ Pi(E)   0.35 0.34 0.35 0.23 0.23 0.03 0.00 0.00 0.00 0.20 0.28 0.31 

 

 
Figure 7. P(E) vs Operating months 

 
 
6.  CONCLUDING REMARKS  

The sensitive environment, the remoteness, and the demanding physical conditions of the Arctic 
create special challenges for drilling waste handling activities. Further, drilling waste treatment facilities 
are not readily available in the region. In the absence of drilling waste treatment and disposal facilities in 
this fragile ecosystem, a major concern could be the assurance of the fulfilment of health, safety, 
environment, and quality (HSEQ) requirements. To reduce the overall environmental footprint and ensure 
the rigorous HSEQ requirements in the Arctic, prior to initiating drilling operations, attention should be 
paid to prediction of probabilities of the potential HSE risks, and consequences of waste handling system 
failures. 

The proposed Bayesian network based risk assessment model (BN-B-RM) can help the user to 
investigate the probability of HSE risks as well as system failure, by considering the peculiar risk 
influencing factors which are caused by the operating environment of the Arctic region. The step-by-step 
approach is outlined, to facilitate the prediction of the HSE risks. By employing the proposed BN-B-RM 
approach, the risk barriers and mitigation measures can be allocated based on the level of estimated risk. 
The illustrative case study shows that the peculiar Arctic risk influencing factors has significant impact, 
especially during winter period, in the overall risk picture, in the course of drilling waste handling 
practices in the region.  
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