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1. INTRODUCTION

Risk based approach has been recommended asaguedlternative for Integrity Management of
Pipelines. For both onshore and subsea (or sube)apipeline Integrity Management standards,
managing the risk related to the pipeline systeraatis is essential for maintaining the integritytiod
pipeline system. It is been recognized in the itmguthat proper management of the threats takitg in
account the probabilities of failure and the conseges of those events can result in an efficmoltto
avoid early accidents and reduced time life, initiaid to reducing risk associated costs, which ban
very high for offshore assets.

Risk based Pipeline Integrity Management takes astount:

- Identification of threats and failure modes

- Estimation of probabilities of failure (PoF)

- Estimation of consequences of failure (CoF)
- Estimation of Risk level (PoF x CoF)

The condition of an existing asset consist otdmplete history, starting from design, fabrication
commissioning, past operation conditions until pnesent time. One of the main questions is “hovglon
the asset can be safely operated?”, the answedrdepends on estimating the future conditions and
behavior of the individual sections of the assatmidrical models have been developed to estimate
corrosion rates, stresses in corroded componehjscsdo internal pressure, loads in pipelines urfidze
spans, etc. However, most of those models arergjtfescriptive or follow empirical and semi-emgéli
approaches that may be valid only under specifioditimns resulting in large uncertainties when
extrapolating results in time.. Field inspectiontimaels have also uncertainties and human errorvedol
both issues recognized by service companies andtope Data from other similar assets can be used,
but with limitations construction-related practicenvironmental and operating conditions may be
significantly different. Hence, risk estimationgpresented by a single number do not convey thes larg
uncertainties that are involved in those calcutetioManaging uncertainty is a key element in the
assessment of the integrity of industrial assets.

Bayesian networks have demonstrated to be a feaafigiroach to assess corrosion threats in a pépelin
(as referred in section 3 below). Bayesian netwsrt mathematical approach based on Bayes theorem
that represents that cause-consequence relatiothigttipxists between the variables of a completesys

in the form of conditional probabilities. The Baiws network approach integrates various sources of
knowledge (models, field data and subject matt@egxopinion) into one framework. The probabilistic
nature of Bayesian networks allows the inclusiothefuncertainties associated from each variable.
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2. INTEGRITY MANAGEMENT OF PIPELINES

Bayesian Networks can be used for the assessrprilmbility of events that can lead to pipeline
failure and how this information can be used inlaiegrity Management perspective. Pipelines are
subject to many different threats, as describdgipeline Integrity management documents and stdsdar
[1-3]. It is usual to consider that pipeline intiégis associated with structural/containment fimts, as
stated in DNV RP-F116 (2015). Hence, the thredtged to those functions can be assessed in tefms o
the influence in the pipeline integrity conditioaded on the significance of the Probability of drail
(PoF) associated to the mentioned functions, asrgonent of the total Risk. In a quantitative appio
for Risk Assessment, the methodology for asseshmoF can be more or less representative ottie r
situation, depending on the approach used ancettadbitity of the information used.

Integrity Management starts during early stagedesign, and shall follow the project until abandemnin
(inclusive). After the takeover of the project bpeoations, Integrity must be maintained during
operational phase. Risk Based Integrity Managerhastbeen intensively used, and is a well-accepted
method in many industries. Hence, managing intg@ginormally closely related to managing risk.Ris
can be defined by its components Probability ofufaiand Consequence of Failure. In this paper, a
probabilistic approach for defining the PoF compunef Risk is presented, where Bayesian Network
approach is presented. This approach has the tbastic of permitting the use of any existing
information as a valid input to PoF, and take @mtoount the uncertainties and beliefs associattdtive
existing knowledge, model or data available.

3. THE BAYESIAN NETWORK MODELLING APPROACH

3.1 The Bayes Theorem
The relationship between frequency and probakityefined by the well-known Bernoulli's limit
theorem:

P(If(x) —p(X)[>6)—0 asN—o )

In this equation, the frequendyx), of a population of data approaches the probgpji{i), of that
same data as the number of trials approachestinfiGtated another way, frequency is a measurable
quantity based on repeated observations, whereaalplity represents the degree of belief or cariimke
in the measured frequency, also referred to asapitily of frequency by Kaplan and Garrick [4]. Sem
authors refer to probability as simply a degrebaifef in an event. This view stems from the ideat hot
all phenomena can be repeated in a controlled maarerive statistical distributions. This is esipdy
true of complex systems. Therefore, probability barassigned to the strength of an expert’'s bahefit
an event and can then later be corrected usingtegpebservations. This is at the heart of Bayegrdm
and it is often referred to as belief network. heéso perspectives can be combined — where possible
statistical distributions are derived through thee wf mechanistic models that are in turn based on
experimental data with their associated uncersntibut we can also include direct probability
distributions representing the degree of beliefexpert in a given observation. These two streafms
probabilities are linked in a Bayesian network tltan be updated through laboratory or field
observations

The Bayes Theorem states that posterior probabilian event (i.e. probability of the event after
an observation is made) is related to the priobabdity of the event (i.e. before the observaimmade)
through the probability of observing the event éimel conditional probability of observation givereth
event occurred, as given by Equation 2:
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.o\ P(B|Ai) * P(Ai)
PCAIB) = S @ iappeap 2)

where P(A; | B) is the posterior probability of an Event Ai givéime observation BR(A) is the prior
probability of the event Abefore the observation B, aRgB | A) is called the likelihood function and is
the probability of the observation B given thatmv&; occurred. The denominator in Equation 2 is called
the probability of observation and is the sum oftlad conditional probabilities of B given events,
multiplied by the probabilities of AThe prior and posterior probabilities can alsocbesidered as
“cause” and “consequence” of a process. The tewnsequence” in this sense should not be confused
with consequence of a risk model. It is strictlyetation between two events in a process, onerigaadi

the other. An example would be the presence ofniat pipeline leading to corrosion.

Bayesian networks use Bayesian inference (Equ&fjoon a larger scale. Bayesian networks
allow calculating the probability of not one buthmerous interconnected parameters. Bayesian networks
are often represented graphically where many randariables are connected by cause-consequence
dependencies. This approach is particularly usefuberform risk assessment of corrodible systems,
because of the ability to consider a great numbewrents that can lead to failure. Since, Bayesofém
shows what is and isn't evidence and also desdtigestrength of the evidence, a succession of 8aye
inferences will provide the most probable scenat&sling to failure, quantify the certainty of the
scenarios, and provide a mathematical framewonledinice uncertainties through observatioa (ata
gathering). The main limitation of Bayesian netvwik that in order to solve the succession of Baypes
inferences numerically only directed acyclic grajalim be used. In other words, the strength of theesa
consequence relationships must be preserved arfdedeback loops are allowed between causes and
consequences to alter the strength of these neddtips. However, knowledge of a consequence can be
used to update the probability of a cause withdtetiag the strength of their relationship. The hhed
the Bayesian network model is the derivation of deaditional probability tables dP(B | A) from
fundamental models and subject matter experts.

Pipelines are exposed to a number of risk faaborshreats, such as intrusion by third parties,
fabrication defects, cyclic loading, and externafl anternal corrosion. The intrusion and fabricatio
related factors may be considered to be essentialBrinvariant factors, although some parametess t
affect intrusion probability (e.g. population deygsichange over time. The probabilities of theskifa
modes may be estimated from the probabilities fiexjuencies) of related factors, such as surragndi
population centers, vehicle traffic, type of welglimsed to manufacture the pipeline, etc. The piitibab
of time-dependent factors, corrosion, fatigue amelss corrosion cracking, have to be assessed asing
number of models. The next section shows an exaapgted to internal corrosion.

3.2 The Internal Corrosion Example

The solution selected to manage and present thieugaevents leading to pipeline failure in a
graphical form is Bayesian network. Bayesian nekaare probabilistic graphical models that encode
probabilistic causal relationships between varighbé interest. Therefore, every event shown in a
Bayesian network is linked by cause-consequencatioekhips, additionally every relationship is
quantified. Bayesian networks offer many advantamyes other types of graphical models, which wil b
described later in the paper.

Figure 3 shows a high level example of a Bayesiatwork for internal corrosion damage
assessment in pipelines [5]. In this model, evérdslead directly or indirectly to corrosion dareaand
failure are linked using cause-consequence rektiips. The model allows a relatively easy
determination of the chain of events that couldl leapipeline failure. Although the network shovm i
Figure 3 is quite simple, it can become rather demphence the implementation of the model in a
numerical application is recommended. In a realiegiion, the main nodes could represent, for imsta
uniform corrosion rate, localized corrosion rat@seén rate, microbiologically influenced corrosicate,
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all contributing to develop and grow a flaw sizeefth and length) and resulting pipeline remaining
strength or probability of failure.

Corrosian
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Figure 3. Sketch view of a basic network creategipelines internal corrosion damage
assessment.

Data uncertainty is of major concern in every tgbaisk assessment. A model that can deal with
data uncertainty is crucial for a good a reliabigeline corrosion risk assessment. Data uncertamty
usually dealt with by using Monte Carlo simulatiphewever in order to effectively utilize the Monte
Carlo method, it is necessary to have all modelg. (Bow, uniform corrosion, localized corrosion,
erosion, microbiologically influenced corrosionc.gtrun together in one single framework. Rarely al
parameters that have an effect on corrosion amedforuthe same framework, which makes it diffidolt
carry the effect of data uncertainty from one maaethe next. Bayesian networks do not have this
problem. To illustrate this, a zoom on a real nekifor Internal Corrosion [6] is shown in Figure®his
figure shows the part of the corrosion model thaltdates the uninhibited corrosion rate (corrosion
inhibition, flow and steel wettability are not showere for simplicity reasons). First, the figureows
that each event is not represented by a numbe lubbability density function that describes the
relative likelihood for each variable to take oryajiven value, and no state, no matter how unlikisly
overlooked. A red bar shows a node that has aicestate (e.g. in Figure 4,,8 concentration is known
to be zero), blue bars show nodes with uncertdorrimation (e.g. the temperature is known to be welo
60°C, but the exact value is unknown) and greers kdrow unknown variables #eand Q
concentrations are unknown, hence they are repgebday flat distributions). Consequently, becaukse o
the uncertainty in the data, the uniform uninhidbit®rrosion rate is known with uncertainty.
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Figure 4. Detailed view of partial network showinfjluence of parameters (Temperature in
Celsius, CQpartial pressure in Bar, Eeconcentration in ppm, n ppb, HS in ppm) in the corrosion
rate assessment (in mm/year).

Some examples of the Bayesian calculation for hatleCorrosion of pipelines demonstrated in
Figure 4 are shown in Tables 1 to 3, from softwdrayin. In these tables the green bars represent
unknown and the red bars represent known varialblesre are not really any inputs and outputs in the
conventional sense of modeling, but only known ankhown variables, where the known variables have
an effect on the probability of the unknown varébl

In Table 1, all variables are unknown. The unifarninhibited corrosion rate distribution is flat
and the corrosion rate could be anything, as lo@ asd as high as 10 mm/year and higher. This dhoul
be expected as no inputs are known; however, Haisple demonstrates that the model can still ramev
with no data.

Table 1. Calculation with unknown data

T co2 Fe2+ 02 H2S pH Cor. Rate
C % Bar % ppm % ppb % ppm % - % mm/year %
20-40 25 0-0.1 25 0-10 33 0-10 25 0-10 25 4-5 25 0-0.01 3
40-60 25 0.1-1 25 10-50 33 10-100 25 10-100 25 5-6 25 0.01-0.1 15
60-80 25 1-10 25 50-100 33 100-1000 25 100-1000 25 6-7 25 0.1-1 43
80-100 25 10-100 25 1000-10000 25 1000-10000 25 7-8 25 1-2 18
2-5
5-10 4
>10 9

In Table 2, all input parameters are known, heheeuniform uninhibited corrosion rate is also
known with a high degree of certainty.

Table 2. Calculation with all known data

T [ co2 Fe2+ [ 02 H2s pH Cor. Rate

C % Bar % ppm % ppb | % ppm % - | % mm/year %

2040 (00N o001 0 o-10 [WEee [ o-10 0 0-10 0 45 0 0-0.01 0

40-60 0 0.1-1 0 10-50 0 10-100 (EENEGOMEN|  10-100 0 56 (MENE6OMM| o0.01-0.1 0
60-80 0 110 |WENE6ON  so-100 0 100-1000 0 100-1000 0 6-7 0 0.1-1 99.5
80-100 0 10-100 0 1000-10000 0 1000-10000 (INGGONNN| 78 0 12 05

25 0

5-10 0

>10 0

Table 3 shows more realistic conditions where sdata is known (i.e. temperature, Cfartial
pressure and pH), some data is uncertainc@centration is lower than 100ppb;SHconcentration is
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lower than 100ppm, but the exact values ferabd HS are unknown), and some data is completely
unknown (Fé& concentration). Consequently the uniform uninkibitcorrosion rate is known with
uncertainty and is probably between 0.1 and 1 man/pet could be as high as 5-10 mm/year with 7%
probability.

Table 3. Combination of known (red), uncertain )land unknown green) data

T | C0o2 Fe2+ 02 H2S pH Cor. Rate

Bar % ppm % ppb ppm - | % mm/year %

- 0-0.1 0 0-10 33 010 (IS0 o-10 (IS0 45 0 0-0.01 0
40-60 0 0.1-1 0 10-50 33 10-100  |So 10-100  (IENBo s6 (NI o.01-01 0
60-80 0 110 [ENEGOMM| s0-100 33 100-1000 0 100-1000 0 67 0 0.1-1 us

80-100 0 10-100 0 1000-10000 0 1000-10000 0 7-8 0 1-2 21
2-5 27
5-10 7
>10 0

Depending on the rest of the model (i.e. corrogibiibition, flow, wettability of the steel) this dji
uninhibited corrosion rate value might be accegtaiolnot. If the high uniform uninhibited corrositate
is unacceptable, for example because of the lackmbsion inhibition or the presence of high watei,
then a sensitivity analysis on the model can helriize what data should be gathered in ordeethice
the uncertainty on the uniform uninhibited corrasiate. It should be noted that such sensitivitglysis
is not generic, because the sensitivity analyslistake into account what is known of the systerhewa
parameter changes, so do the results of the satysithalysis.

As mentioned above, it is unlikely that every aspef corrosion can be modeled with a high
degree of accuracy. Thus, a methodology that essessrosion damage would have to depend on many
different models such that uncertainties in theraion prediction can reduce. Because models (i.e.
knowledge) improve and modeling software changesr ¢imne, the creation of one unified corrosion
threat assessment methodology would require dyndowots that can be easily updated. Bayesian
networks provide an answer to both problems by:

a. combining different sources of knowledge (défgrmodels & different software products), and

b. creating a methodology that can be easily updatenew knowledge becomes available.

Similar approach can be applied also to externalosmn [7] and other threats like stress corrosion
cracking, geological and geotechnical events aind garty intervention.

3.3 Information Sources
The Bayesian Network approach can be applied viftbrdnt sources of information.

Physics based models

One of the most reliable ways to derive conditiopadbability tables is to use fully tested and
recognized physics based models because thessenpoair understanding of the underlying phenomena
and recognized models can be assumed to have bmmrtegted. Physics based models (such as
multiphase-flow or corrosion rate models in thddi@ing examples) are run multiple times over atsse
of possible inputs in a Monte Carlo fashion. lrégognized that a specific phenomenon, such as CO
corrosion, may be represented by a number of malkaisnay produce different calculated resultgier
same input parameters. In the Bayesian networktieartsmultiple models can be run multiple timesl an
results can be combined in the conditional prolitgbihbles, using weighting functions for different
models. This is very useful as trust is increaseithié areas where all models provide the same yvalong
justified doubt emerges in the areas where modetsge. If the veracity of different models for theme
phenomenon is not knowanpriori, equal weighting functions can be applied that tteem be corrected
later through observations.
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Expert’'s knowledge

Quantification of the causal relationships is uesusing expert's knowledge. This is necessary
as there are many mechanisms of pipeline failute wd reliable mechanistic model. Stress-corrosion
cracking and microbiologically influenced corrosiare examples of complex phenomena where many
overlapping mechanisms may operate and a detaitmtkinof the complete phenomenon is difficult to
achieve. Yet, some experts understand parts oé thexblems quite well and this knowledge should not
be discarded because it is difficult to quantifhisTknowledge is added scenario by scenario inlysua
smaller conditional probability tables. Conditiorabbability tables derived from expert's knowledge
have larger uncertainties and this uncertaintyarsied by the Bayesian network model all the wathe
final results.

Field data

Field data can be used to populate the conditipraddability tables. Every instance for each input
set is counted and used to generate columns ofdhditional probability tables. Using field datasha
many drawbacks. First, field data usually doesacoetr all possible sets of input parameters anchvithe
does some combination of inputs have many measutsmehile others have few. Second, field data
varies from field to field and estimation of thecentainties associated to the data is difficultdAnost
importantly, while field experts are easily chatled, field data is rarely put into context, prowiglia
false sense of security.

If an analytical or a numerical model is availatdedescribe a phenomenon, then probabilistic
analysis of this phenomenon can be performed udistgbuted inputs in to this model. If several lsuc
phenomena exist and they can be integrated intaraerical model, probabilistic analysis can be
conducted by repeatedly running such an integnaede! using a probabilistic driver, such as the Mon
Carlo method, each run being called a realizationsuch a case, the Bayesian method provides no
advantage, and could indeed be less rigorous. Haywav complex systems where different phenomena
are connected in diverse ways and cannot be dedclily an integrated model, Bayesian networks
provide a rigorous mathematical method to combifferént types of probabilistic knowledge in order
make informed decisions. The other major advantafgBayesian models is the reversibility of the
Bayesian inference as shown in Equation. 2. Unditkeer models where there are inputs and outputs, in
Bayesian models there are only unknown and knowhatilities. If two events are linked, then knowing
the probability of one event improves the knowledgethe probability of the other event. Finally,
Bayesian networks are graphical models, makingvibigalization of complex chains of events easy to
understand, unveiling the probable mechanisms ibfréa A Bayesian network model developed for
corrosion helps the user understand corrosion phena and implicitly suggests ways to control or
combat corrosion.

4. CONCLUSIONS

Uncertainties management is a key aspect in agrity management program. Uncertain data and
missing information can impose a large error ansimtérpretation when assessing the risk of a mipeli

Bayesian networks provide a mathematical framewomxtract knowledge form different models
under the form of conditional probability tablesheTcombined models can be used to provide more
reliable information than a single model would.

Bayesian networks are particularly well suitedd&al with uncertainty. They do not have inputs
and outputs but known and unknown parameters. Knpamameters combined with the knowledge
contained in the conditional probability tables tetp deduce the state of the unknown parameters.
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Another great advantage of Bayesian networks ag thbility to incorporate new evidence (new
knowledge), such as the results of a new pipelispéaction, and reassess the forecast results taking
account the new evidence. This ability represerkeyafactor to the managers in charge of the pigeli
integrity as they can update their integrity progrand actions always based on the most recent
knowledge of the conditions of the pipeline.

One situation where Bayesian networks can be aagaaus is for unpiggable pipelines, where the
lack of inspection data can be compensated by atf@mation available.
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