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1. INTRODUCTION 
 

The increasing globalization of world economy is turning the environment of organizations 

increasingly complex, where scenario changes occur in a dynamic, nonlinear, unpredictable and fast-

paced way, requiring organizations to have a continuing need for changes to adapt to new success 

conditions. Proper management of opportunities and threats created by these scenarios has come to 

constitute a decisive factor for competitiveness and survival of organizations. A great improvement of 

technological aspects in comparison with human and organizational factors has been observed in recent 

decades. This mismatch is evident if one looks at accident histories at facilities that handle hazardous 

technologies, which shows that organizational factors have an increasing importance on accident causes 

[1]. 

When compared to technological factors, human and organizational factors are characterized by 

their multidimensional nature and complexity due to nonlinear interactions that influence their behavior. 

A variety of quantitative and qualitative methods have been proposed to incorporate these factors into 

reliability calculations, but not as yet successfully. 

This paper is based on the model and case study presented in [2]. The reason is that the Tokai-Mura 

accident [3] presents information on organizational features that can be used as a suitable example for the 

model proposed in [2]. 

The accident occurred at a uranium reprocessing plant, where JCO (a Japanese nuclear fuel cycle 

company established in October 1979 as a wholly owned subsidiary of Sumitomo Metal Mining Co., Ltd. 

as Japan Nuclear Fuel Conversion Co.) officials shed about 16.6 kilograms of uranium into a purification 

tank containing nitric acid, instead of the commonly used 2.4 kg. What followed was a flash of blue light 

(Cherenkov radiation) due to the criticality of nuclear fuel. Three workers were exposed to high levels of 

radiation and two of them died. 

In the investigation of the accident causes, it has been found that a different procedure from that 

agreed with the regulatory authorities was used. According to information supervisors and possibly 

https://en.wikipedia.org/wiki/Sumitomo_Group


   
   
managers directed operators to expedite the nuclear fuel processing and workers might have decided to 

skip more steps than they were ordered. Additionally, the training provided to employees was insufficient 

and did not prepare them to deal with the hazards of a possible criticality. 

The company failed to meet the principle of defense in depth, not installing protective barriers, 

such as alarms and high walls, to warn and protect the neighboring residential area. It did not undertake a 

project review, keeping a fan that in accident situation contributed to the unwanted spread of radioactive 

iodine. 

The idea here is to take the same model of [2] and develop it by means of a Bayesian network. The 

reason for doing so is to take advantage of the tools provided by Bayesian networks [4], like easiness for 

modeling dependent events, which is the case when developing human failure analyses for risk analysis of 

process plants. 

In a previous work [2], a model for assessing human error probabilities for process plants was 

developed by considering, as a starting point, human failure probabilities taken from THERP [5] and 

CREAM [6]. These human error probabilities do not take into account elements that represent the facility 

conditions in determining human error probabilities (HEP) used in probabilistic safety analyses of process 

plants.  

An approach to show the predominance of human factors as accident causes was presented, as well 

as existing methodologies for HEP determination and their deficiencies in incorporating socio-technical 

elements that influence them. Such elements are: control center design, remote operations, human-

machine interface, training, communications, environmental factors, workloads and staffing levels, safety 

culture, procedures, maintenance, management of change, and incident investigation [7]. 

A mathematical model, based on Bayesian networks, is now proposed to incorporate these elements 

in an easier way. As discussed earlier, the use of Bayesian networks provides some convenient features, 

as, for example, the possibility of easily performing sensitivity analyses, as is the case in this paper.  

This paper is organized as follows: section 2 briefly discusses Bayesian networks. Section 3 

presents the application of a Bayesian network for the Tokai-Mura failure event, as had been in the 

previous paper [2] and section 4 presents the conclusion reached. 

 

 

2. BAYESIAN NETWORKS 
 

Given the complexity involved in Bayesian inference when it comes to systems with more than two 

variables, Bayesian networks are recommended [4]. Bayesian networks (BN) are directed acyclic graphs 

that, in a probabilistic way, represent dependencies between variables. Network nodes represent random 

variables (discrete or continuous) and directed arcs illustrate the dependency relationships among 

variables [8]. The relationship between cause and effect is expressed by conditional probabilities. 

BNs are useful for aggregating expert opinions. The complexity of a Bayesian network depends on 

the level of information that can be obtained and the importance that the analyst gives to such information. 

Each node has an associated conditional probability table (CPT) that quantifies the effects that 

parents exert on a node, i.e., the probability of the node being in a specific state, given its parent states. 

For each variable A that has as parents X1, ..., Xi, there is a table of conditional probabilities P(A |X1, ..., Xi). 

 

 

3. TOKAI-MURA HUMAN FAILURE ANALYSIS BY A BAYESIAN NETWORK 

 

It should be recalled from [1] that the purpose of our model is to modify basic human failure 

probabilities by considering plant characteristics related to organizational features. 

The purpose it to take a ground human failure probability (HEP) and modify it by considering a 

proposal originally set in [9]. Notice that the difference between our model and that of [9] is the way we 



   
   
have modified the ground human error probabilities: we propose this modification by means of three 

grades (1, 2, and 3) and an auditing factor (ri). 

Grade # 1 measures the relative importance of the factor influences and is achieved through an 

array of factors by which it is possible to analyze the interactions between them. 

Grade # 2 measures the weight of each factor or element influence through the elicitation of expert 

opinion [8]. Twelve experts attributed a degree ranging from 1-5, where 1 is the lowest contribution 

degree and 5 is the largest one, to the importance of each factor. The grade of each element has been 

calculated by the average of the grades assigned by experts. 

The fourth factor (training) was considered the most relevant (grade equal to 4.7) [2]. It should be 

noted that these weights were attributed by the experts prior to the model application to the Tokai-Mura 

event (as will be seen, factors 2 and 10 have no influence on the analysis). The participants were senior 

engineers working in the nuclear, chemical, and petrochemical industries and Brazilian regulatory 

agencies.  

Grade 3 represents the incidence weights of factors or elements as root causes or contributors, 

being established from an analysis of abnormal events (incidents, accidents and near misses, [11], [12]) in 

the plant, which shows the number of times that each element contributed as a root cause. The incidence 

of the factors or elements shown in the Bayesian network of Fig. 1 (boxes at the left) appears as a root 

cause of the abnormal events analyzed and this normalized figure was used as a weight for Grade 3. If an 

event history is unavailable, either data from a similar plant is used or Grade 3 is set equal to 1.  

The rі factor measures the degree of implementation of each factor assessed by the plant auditing 

process. To measure the degree of implementation of the elements a questionnaire was used to assess 

compliance of each factor. Each verification item is scored from 1 – 5, where 1 means noncompliance and 

5 means full compliance. No scoring for elements 2 and 10 were considered because they did not apply to 

the Tokai-Mura plant. Modifications and grouping of elements in the original OGP (International 

Association of Oil and Gas Producers) questionnaire have been made to simplify the scoring and model 

application.  

In order to correct the original HEP values of existing HRA techniques we proposed a quantitative 

model taken from [9] and adapted for our purposes. The correction to the ground human error 

probabilities are performed by means of the discussed Grades 1, 2, and 3 and also the auditing factor ri. 

Notice that the ground probabilities are taken from THERP [5] and CREAM [6], as already done in our 

earlier paper [2].  

Figure 1 displays the Bayesian network developed for analyzing the Tokai-Mura event. The boxes 

on the first column (left) display the OGP elements that are central to estimate Grade # 1. As discussed in 

[2], elements 2 and 10 do not apply to the Tokai-Mura plant. The second column displays the failure 

events that appear in the human failure event tree of [4] and finally the box on the third column displays 

the Tokai-Mura human failure probability. It should be noticed that the results of both analyses match. 

This means that Bayesian networks may be a useful tool for performing human reliability analyses in a 

systematic way and also perform a sensitivity analysis of the results in order to shed light on the most 

important contributors to the final result.  

The data displayed in the first column of Fig. 1 is related to the results of the auditing procedure 

that indicates the degree of implementation of each element (that is, ri). Next, for each failure event of Fig 

1 we connect to it all elements that impact it and in the box for each failure event we can write down an 

equation for calculating the failure probability for each event. Again, failure probabilities are displayed in 

percentages. The first percentage is the failure probability and its complement is the success probability. 

For example, for event A (Failure of correct directing and/or consideration of mass, volume and geometry 

in the safe preparation of batch (P2 inadequate planning) the failure probability is 2.51 x 10
-2

. The 

equations in each box of a failure event are exactly the ones developed in the earlier paper for each case. 

Table 1 describes all failure events for the analysis. Events B, C, E, and G are not displayed here because 

their contribution is negligible [2]. 



   
   

 
Figure 1 – Bayesian Network for modeling the Tokai-Mura event 
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Table 1 – Description of failure events 

Failure 

Event 

Event Description 

A 

Failure of correct directing and/or consideration of mass, volume and geometry in 

the safe preparation of batch (P2 inadequate planning) 

D 

Failure to conduct a thorough briefing in batch preparation (I2 - decision error 

with P2 - planning error) 

F 

Failure of the supervisor and the production head to detect and correct the 

operator group decision on the tank mode use and number of batches 

H Supervisor fails to stop production 

 

Table 2 displays an initial sensitivity analysis related to the ri factor. Notice that the first column 

displays the OGP elements, the second one displays the human failure probability range and the last one 

displays the relative percentage variation. The range of column 2 was obtained as follows: we varied the 

degree of implementation from ‘Bad’ (which means a degree of implementation equal to zero) to 

‘Excellent’ (which means a degree of implementation equal to 100%). The first figure in the second 

column is the failure probability for ‘Bad’ implementation degree and the second one is the failure 

probability for the ‘Excellent’ degree of implementation. 

 

Table 2 – Sensitivity Analysis for the ri Factor 

Element HEP range (x 10
-2

) Relative variation (%) 

1 1.65 – 1.58     4.3 

3 1.62 – 1.62     0.0 

4 3.45 – 0.19 201.2 

5 2.06 – 1.29   47.5 

6 1.62 – 1.62     0.0 

7 1.87 – 1.08   48.8 

8 1.75 – 1.29   28.4 

9 2.03 – 0.84    73.5 

11 2.85 – 0.94 117.9 

12 1.74 – 1.32   25.9 

 

It can be seen from Tables 1, 2, and 3 that elements 4, 5, 7, 9, and 11 are the most important for the 

Tokai-Mura event analysis. 

 

Table 3 – Relationship between the events of human event trees and applicable elements 

Human failure 

event 

Applicable elements  

A 1,3,4,5,7,8,9,11 

D 4,5,7,8,11,12 

F 4,5,7,8,11 

H 4,5,7,8,11,12 

 

 Table 4 shows the sensitivity analysis for the human failure event A. A similar sensitivity analysis 

was performed for human failure events D, F, and H. Notice that human failure events B, C, E, and G 

were not considered here since their contribution to the global human failure event is negligible, as can be 

seen from Fig 1. 



   
   

 

Table 4 – Sensitivity Analysis for the Human Failure Event A 

Element HEP range (x 10
-2

) Relative variation (%) 

1 3.38 – 2.04   53.4 

3 2.54 – 2.42     4.8 

4 3.48 – 0.95 100.8 

5 2.80 – 2.25   21.9 

7 2.68 – 2.07   24.3 

8 2.59 – 2.28   12.4 

9 3.04 – 1.41   64.9 

11 3.57 – 1.77   71.7 

 

It may be seen from Table 4 that Element # 4 is the most important since it doubles the event 

human failure probability. Element # 9 is the second most important. A similar behavior may be found in 

Table 5, 6, and 7. Notice that these results may help making decisions as to where to implement 

modification when resources are limited. 

 

Table 5 – Sensitivity Analysis for the Human Failure Event D 

Element HEP range (x 10
-2

) Relative variation (%) 

4 49.9 – 11.2 112.8 

5 38.9 – 30.3   25.1 

7 37.0 – 27.5   27.7 

8 35.6 – 30.7   14.3 

11 51.4 – 22.9   83.1 

12 36.3 – 29.1   21.0 

 

Table 6 – Sensitivity Analysis for the Human Failure Event F 

Element HEP range (x 10
-2

) Relative variation (%) 

4 50.3 – 10.1 119.3 

5 38.5 – 29.4 27.0 

7 36.4 – 26.5 29.4 

8 35.0 – 29.9 15.1 

11 51.9 – 21.8 89.3 

 

Table 7 – Sensitivity Analysis for the Human Failure Event H 

Element HEP range (x 10
-2

) Relative variation (%) 

4 30.3 – 2.34 174.8 

5 19.8 – 12.9 43.1 

7 18.1 – 10.9 45.0 

8 17.0 – 13.2 23.8 

11 31.9 – 7.98 149.5 

12 17.6 – 12.0 35.0 

 

 

4. CONCLUSIONS 
 

It has become clear at safety conferences and congresses in the nuclear and chemical and 

petrochemical fields that existing laws and regulations, especially some requirements of international 



   
   
regulatory bodies such as the CSB (Chemical Safety Board, USA), are more and more explicit in 

regarding the implementation of human reliability analysis (HRA) as a way of risk reduction. However, 

most organizations still do not have efficient mechanisms to understand and implement policies for 

human factors analyses. This work offers a contribution to include in a comprehensive manner the 

elements that influence human error. Also, improvements on plant management that can be taken into 

account by the 12 factors considered can be easily evaluated by the Bayesian network, thus allowing for 

estimating human reliability improvements. 

A benefit of the Bayesian network model is the fact that a sensitivity analysis can be easily 

performed to analyze the impact of each of the 12 factors mentioned, thus allowing for a more realistic 

plant behavior modeling in face of abnormal events.  

A contribution of the proposed model is to allow seeing how elements relate and how they 

influence HEP quantification, which allows directing efforts in the short and long term to reduce HEPs or 

even review the effectiveness of the efforts being made to reduce them. 
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