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ABSTRACT: The q-Weibull distribution has been applied to the reliability analysis due to its ability in 
modeling bathtub curves using a single set of parameters. The q-Weibull model is based on the Tsallis 
non-extensive entropy, which is used to describe complex systems that demonstrate long-range 
interaction and long-term memory. To model data with q-Weibull, its parameters must be estimated 
accurately. In this work, maximum likelihood estimators (MLE) are developed because they are 
asymptotically efficient. However, due to the intricate system of nonlinear equations derived from the 
log-likelihood function and the constraints over the parameters, derivative-based optimization methods 
may fail to converge. Since analytical expressions cannot be derived, nature-based heuristic optimization 
method of artificial bee colony (ABC), which does not require derivative information in the quest for the 
optimum, can be used to solve the maximum likelihood optimization problem. To deal with the slow 
convergence of ABC, this paper proposes an adaptive hybrid ABC (AHABC) algorithm which combines 
Nelder-Mead simplex search method with ABC for the maximum likelihood estimates of the q-Weibull 
parameters. The proposed algorithm is successfully applied to one example involving failure data 
characterized by bathtub-shaped hazard rate function, which is adequately modeled by q-Weibull 
distribution. 
 
 
1. INTRODUCTION 
 
 The Weibull distribution, frequently used in reliability engineering, has been generalized to a q-
Weibull distribution by Picoli et al.  [1] in the context of non-extensive statistical mechanics. Compared to 
the Weibull distribution that can only describe monotonic hazard rate functions, the q-Weibull is able to 
model their various behaviors, including the monotonic ones: monotonically decreasing, monotonically 
increasing, constant, unimodal and bathtub-shaped. Assis et al.  [2] confirmed that the q-Weibull is able to 
reproduce a bathtub curve using a single set of parameters for its three characteristic regions. Assis et 
al.  [2] also gave the range of the parameters that should be used for each type of curve. The parameter q, 
also known as entropy index in statistical mechanics, was introduced by Tsallis  [3]. The Tsallis' entropy 
generalizes the Boltzmann-Gibbs-Shannon normal entropy with this index and is given by:   
 

 �� � 1�∑ ��	
��1	�1                                                                                                                               (1) 

  
 where 
 is the total number of microstates of the system, �� are the occupation probabilities and q 
is a real parameter that rules the degree of generalization of the theory. The standard Boltzmann-Gibbs 
entropy is recovered in the limit q→1.    
 Picoli et al.  [1] firstly introduced the q-Weibull distribution which slowly interpolates the q-
Exponential and the Weibull ones. The author verified that for highway length modeling neither q-
Exponential nor Weibull distributions led to a satisfactory result, only the q-Weibull one gave a good 



   
   
adjustment. Furthermore, the q-Weibull distribution has been successfully applied to model life data in 
the context of reliability engineering. Costa et al.  [3] used q-Weibull distribution to properly describe 
time-to-breakdown data of electronic devices. Sartori et al.  [5] considered a q-Weibull distribution to 
describe the failure rate of a compression unit in a typical natural gas recovery plant, based on time-to-
failure data. It is shown that the q-Weibull distribution fits better to the life data than the classic Weibull 
distribution, since the q-Weibull is more general and more flexible due to the additional parameter q. 
 To model data with q-Weibull, its parameters must be estimated accurately. The most commonly 
used approach to estimate q-Weibull parameters is the least squares estimation (LSE). Picoli et al.  [1] 
used the mean square minimum method to obtain the optimal parameters. Sartori et al.  [5] and Assis et 
al.  [2] calculated q-Weibull distribution parameters through square correlation coefficient �
 
maximization. Jose and Naik  [6] provided likelihood function but claimed that it is very difficult to obtain 
the maximum likelihood estimates of the parameters because the equations are nonlinear. 
 Extensive simulation studies show that the maximum likelihood estimation (MLE) method is better 
than the LSE method in reliability applications when data sets are typically small or moderate in size  [7]. 
Since the distribution of maximum likelihood parameter estimates are more precise with smaller variance, 
in this work, we adopt the MLE method. However, the application of MLE on q-Weibull distribution 
presents some difficulties. The first derivative equations of the related log-likelihood function are highly 
nonlinear, the equations do not have analytical solutions for the parameters' estimators. In this context, a 
numerical approach can be alternatively adopted. In this work, we employ an artificial bee colony (ABC) 
algorithm, which is a nature-based heuristic method that does not require derivative information to solve 
the maximum likelihood problem. 
 ABC was introduced by Karaboga  [8] and is an optimization algorithm based on the intelligent 
foraging behavior of honey bee swarm for optimizing multidimensional and multimodal numerical 
functions. However, the convergence performance of ABC for local search is slow due to its solution 
search equation, which is good at exploration but poor at exploitation. Some modified versions of ABC 
have been proposed by researchers to improve its local search performance. To mention a few, inspired 
by PSO, Zhu and Kwong  [9] proposed an improved ABC algorithm named gbest-guided ABC (GABC) 
algorithm by incorporating the information of global best solution into the solution search equation to 
improve exploitation. Kang et al.  [10] proposed a Hooke-Jeeves ABC (HABC) algorithm which combines 
Hooke-Jeeves pattern search with ABC algorithm. In the HABC, the exploration phase is performed by 
ABC and the exploitation phase is completed by pattern search. Karaboga and Gorkemli  [11] proposed 
the Quick ABC (qABC), which models the behavior of onlooker bees more accurately and improves the 
performance of standard ABC in terms of local search ability. Kang et al.  [12] proposed a hybrid simplex 
ABC algorithm (HSABCA) that combines Nelder-Mead simplex method with artificial bee colony 
algorithm for inverse analysis problems. The HSABCA was applied to parameter identification of 
concrete dam-foundation systems. The Nelder-Mead simplex algorithm proposed by Nelder and 
Mead  [13] is an efficient local search method. It was also combined with other heuristic search method to 
improve the convergence accuracy and speed. For example, Fan and Zahara  [14] proposed the hybrid 
NM-PSO algorithm based on the Nelder-Mead simplex search method and particle swarm optimization 
for unconstrained optimization. 
 A method that not only does not depend on derivative but also presents fast convergence is 
necessary in the MLE optimization problem. In this direction, this paper proposes an Adaptive Hybrid 
ABC (AHABC) algorithm which combines a local Nelder-Mead simplex search method with ABC to 
enhance the local search capability of ABC. AHABC dynamically controls the exploration and 
exploitation, given that the parameter for Nelder-Mead local search is adaptively tuned according to the 
search status. 
 This paper is organized as follows. In Section 2, an introduction about the q-Weibull distribution 
and its properties are given. In Section 3, the maximum likelihood problem related to the q-Weibull 
distribution is presented. In Section 4, AHABC algorithm is proposed to solve the maximum likelihood 
estimation problem. In Section 5, the proposed AHABC is applied to one example involving reliability-



   
   
related data that can be properly modeled by the q-Weibull distribution. Finally, conclusions are given in 
Section 6. 
 
 
2. THE Q-WEIBULL DISTRIBUTION 
 
 The probability density function (PDF) of the q-Weibull distribution is as follows: 
 

 ����� � �2 � 	� �� ������� ���� ��������  � � 0                                                                         (2) 

 
 where  ! 0 and 	 " 2 are shape parameters and # ! 0 is a scale parameter. The q-Exponential 
function is defined as: 
 

 exp���� � '�1 ( �1 � 	��� ))*+,					��	1 � �1 � 	�� ! 00,																																																					otherwise                                                             (3) 

 
 Therefore, the q-Weibull PDF can be rewritten as: 
 

 ����� � �2 � 	� �� ������� �1 � �1 � 	� ������
))*+ , � � 0                                                            (4) 

 
 in which 
 

 � ∈ 670,∞�,			for	1 " 	 " 270, �:;<=,							for		 " 1                                                                                                        (5) 

 
 with �:;< � ������)/?  

 The q-Weibull cumulative distribution and reliability functions are as follows: 
 

 @���� � 1 � �1 � �1 � 	� ������
A*+)*+

                                                                                            (6) 

 

 ����� � �1 � �1 � 	� ������
A*+)*+

                                                                                                  (7) 

 
 The hazard function is defined as: 
 

 B���� � C+���D+��� � �
��� ?E?�?*)
��������FE�?                                                                                                        (8) 

 
 This equation is able to represent different types of hazard functions, according to the values of the 
shape parameters  [2], besides the constant type (with 	 → 1 and  � 1). The function B���� is 
monotonically decreasing for 1 " 	 " 2 and 0 "  " 1, monotinically increasing for 	 " 1 and  ! 1, 
unimodal for 1 " 	 " 2 and  ! 1 and bathtube-shaped for 	 " 1 and 0 "  " 1. 



   
   
 For numerical experiments, we use the inverse transform method by inverting @���� to generate 
random samples. The q-Weibull random number generator is then obtained: 
 

 � � # ∙ IJ��K
)*+A*+L

��� M
)?
                                                                                                         (9)         

 
where U is a uniform random number in [0,1]. 
 
 
3. THE MAXIMUM LIKELIHOOD CONSTRAINED PROBLEM FOR THE Q-

WEIBULL DISTRIBUTION 
 

In order to estimate the parameters of the q-Weibull distribution, the MLE method is adopted. Let � � ���, �
, … , �O� be an n-dimensional vector of observed failure times �� , � � 1,… , P, independently 
drawn from a q-Weibull distribution. The likelihood function is given by: 
 

Q�#,  , 	|�� � ∏ ������O�T� � ∏ �2 � 	� �� ��U����� �1 � �1 � 	� ��U����
))*+O�T�                            (10) 

 
Instead of maximizing Eq. (10), it is easier to optimize its log-likelihood function as Eq. (11). The 

optimization problem is constrained to the conditions that guarantee the properties of the q-Weibull PDF 
as Eq. (12)-(15). The maximum likelihood constrained optimization problem for the q-Weibull 
distribution is given as follows: 

 
max 

 V�#,  , 	|�� � PWP�2 � 	� ( PWP� � � P ln�#� ( � � 1� ∑ ln����P��1 ( 11�	∑ ln	71 � �1 � 	� ���#� =P��1    (11)                                                                                               

 
s.t. 2 � 	 ! 0                                                                                                                             (12) 
  1 � �1 � 	� ��U��� ! 0, � � 1,… , P                                                                                           (13) 

 # ! 0                                                                                                                                         (14)  
  ! 0																			                                                                                                                        (15) 
 
The first derivatives of log-likelihood function for parameters are nonlinear, and we cannot obtain 

analytical solutions. A heuristic based constrained optimization method can solve this problem. In this 
paper, the maximum likelihood estimates #̂,  [  and 	\ are obtained by means of AHABC algorithm, which 
is described in the following section. 
 
 
4. PROPOSED ADAPTIVE HYBRID ARTIFICIAL BEE COLONY ALGORITHM 
 
4.1 Overview of Artificial Bee Colony Algorithm 

 



   
   

In ABC, the colony consists of three groups of bees: employed bees, onlookers and scouts. The 
position of a food source represents a possible solution to the optimization problem and the nectar amount 
of a food source corresponds to the fitness of the associated solution. At the beginning, the algorithm 
generates a randomly distributed initial population of �] solutions. Each solution �� (� � 1,2, … , �]) is 
an n-dimensional vector. 

A candidate solution ̂� from the old one �� can be generated as: 
 ^�_ � ��_ ( `�_���_ � �a_�                                                                                           (16) 

 
where b ∈ c1,2, … , �]d and e ∈ c1,2, … , fd are randomly chosen indexes; b is different from �; `�_ 

is a random number in the range [-1,1]. 
The fitness of a solution ������� can be calculated from its objective function value ����� as: 
 

������� � g ��hC�<U� ,															if	����� � 0
1 ( absk�����l,					if	����� " 0                                                                              (17) 

 
An onlooker bee chooses a solution depending on the probability value �� associated with food 

source � as follows: 
 �� � C���<U�∑ C���<m�nomp)                                                                                                                          (18) 

 
After a candidate solution is produced and the fitness is evaluated, its performance is compared 

with that of its old one. If the fitness value of the new solution ̂� is higher than the current solution ��, it 
replaces the current solution, otherwise the current solution remains. When a solution cannot be improved 
further through a predetermined number of cycles, called ‘W�q��’, then that solution is abandoned and 
replaced with a new solution generated randomly by a scout as: 

  ��,_ � �:�O,_ ( rsPt�0,1���:;<,_ � �:�O,_�                                                               (19) 
 

where �:�O,_ and �:;<,_ are lower and upper bounds for e�u dimension. 
 
4.2 Overview of Nelder-Mead Simplex Algorithm 
 

The Nelder-Mead simplex algorithm was developed by Nelder and Mead  [13] to efficiently find 
local minima. This algorithm uses a simplex of f ( 1 points for f dimensional vectors. The main idea is 
to collaboratively move f ( 1 vertices to the lowest point of the objective function. This method rescale 
the simplex by four procedures: reflection, expansion, contraction and shrinkage. Let ��, �
, … , �vh� 
represent the points in one simplex, ranking from the best one to the worst one.  

One iteration of simplex search can be described as either of two steps: 
1) Replace the worst point 
The candidates to replace the worst point �vh� in previous simplex for the next iteration, and these 

candidates are: 
 �w � �x ( y��x � �vh��                                                                                                        (20) 

 �z � �x ( {��x � �vh��                                                                                                        (21) 
 



   
   �| � �x ( }��x � �vh��                                                                                                        (22) 

 
where, y � 1, { � 2, } � �0.5, which are respectively reflection, expansion and contraction 

coefficients  [12]; �� is the center of points c��, �
, … , �vd. The new �f ( 1��u point is the best candidate, 
i.e., �vh� ∈ c�w, �z , �|d and ���vh�� � min	c���w�, ���z�, ���|�d. 

2) Shrink the simplex towards the best point �� 
All points except �� will be reduced towards ��, i.e. 
 �� � �� ( � ∗ ��� � ���, � � 2,3, … , f ( 1                                                                            (23) 
 
where  � � 0.5 is the shrink coefficient  [12].  
From these two steps, we can see that the simplex search is just exploiting local neighborhood area 

and is very aggressive towards the local minimum. 
 
4.3 The Adaptive Hybrid ABC for the q-Weibull MLE problem 
 

In the ABC algorithm, while onlookers and employed bees carry out the exploitation process in the 
search space, the scouts control the exploration process. From our simulation experiments, we found that 
although ABC could find the global optimum very fast, the convergence speed of ABC for local search is 
slow. In order to make full use of ABC’s exploration, and avoid its drawbacks, an adaptive hybrid ABC is 
proposed, which incorporates local search stage. The main idea of AHABC is that through adaptively 
tuning the parameters of hybrid ABC according to the search process, the hybrid ABC will gradually 
change from global ABC search pattern to local search pattern. The details of this AHABC algorithm are 
presented in the following subsections.  
 

4.3.1 Hybrid Strategy 
 
 “Hybrid Strategy” is the method to combine ABC with a local search algorithm. In our proposed 
algorithm, the Nelder-Mead simplex local search is incorporated into ABC as an additional phase after the 
original three phases within every iteration. The input of local search phase is the best f ( 1 solutions in 
the population, where f is dimension of the optimization problem. These solutions will be exploited by 
the Nelder-Mead simplex local search for a number of function evaluations ]�. 
 

4.3.2 Adaptive Switch Mechanism 
 
 “Adaptive switch mechanism” describes the mechanism how the hybrid algorithm is changing from 
global exploration to local exploitation.  Basically, the principle of “adaptive switch mechanism” is to 
gradually increase the use of local search by tuning algorithm parameters according to the search process. 
In this paper, we propose the following formula to determine the number of function evaluations for 
simplex search: 

 ]� � � ∗ W�q�� ∗ total	number	of	scout	bees.                                                                           (24) 
 

 Firstly, this definition of ]� will guarantee that the search process will become more and more 
local. Secondly, the total number of scout bees is a symbol of search status. A large number of scout bees 
indicates that a significant portion of the solution space has been explored, that the exploration is 
becoming inefficient and a local exploitation is becoming urgent. The W�q�� is also an important ABC 
parameter, which controls the scout bee generation frequency. � is a coefficient that controls the amount 
of local search. For the optimization problem in this work, � � 1 provided an acceptable convergence 



   
   
speed. Thus, we use the product of W�q�� and the total number of scout bees as the number of function 
evaluations within the local search phase of the AHABC. In summary, ]� dynamically increases along 
the search process and it gradually changes from global to local. 
 

4.3.3 Constraints 
 
 For the constraints (12-15) related to the q-Weibull MLE problem, we adopt the “throw away” 
approach, which means that if the generated solution is not feasible, we throw it away and keep the 
current solution. Basically, this is a simplified Deb’s rule  [15] that involves domination rules between 
solutions. 
 There are three commonly used control parameters in the standard ABC: the number of food 
sources �], the value of W�q��, which can be obtained from the formula W�q�� � �] ∗ f  [8], where f is 
dimension of the optimization problem, and the maximum cycle number (��]). In the AHABC 
algorithm, one iteration cycle incorporates the Nelder-Mead local search iterations. Instead of setting the 
iteration numbers for ABC and Nelder-Mead local search separately, we use one parameter of maximum 
number of function evaluations (�@�), totaling the number of the ABC and Nelder-Mead local search 
function evaluations. There are three stop criteria: 1� Maximum number of function evaluations (�@�). 2� The global best solution is the same for  qs������r�sW times. In this case, the iteration number 

in which the best solution has been found is used. 3� The global best objective function value in two consecutive iterations are different, but such a 
difference is less than a predefined tolerance �. 

 
 
5. APPLICATION EXAMPLES 
 
 In this section, the proposed AHABC for the maximum likelihood estimates of the q-Weibulll 
parameters is applied to one example involving reliability-related data of engineering equipment. For this 
application example, AHABC parameters are shown in Table 1. Also, the initial bounds for parameters q, 
β and η are set to [-10, 1.9], [0.1, 10], [0.1, �:z;O], respectively, where �:z;O is the mean of sample. 
 
Table 1-AHABC parameters 

Parameter Value 
ABC �] 50 W�q�� 150 �@� 200,000 qs������r�sW 1000 � 1e-16 
Nelder-Mead simplex 
method 

y 1 { 2 } -0.5 � 0.5 
Adaptive hybrid 
coefficient 

C 1 

 
 Failure data of oil well pump  [2] in Table 2 is analyzed. The objective is to obtain the maximum 
likelihood estimates for the q-Weibull parameters by means of the proposed AHABC.  
 



   
   
Table 2-Times to failure of pumps 

8 38 42 59 71 146 184 
185 199 204 214 379 457 457 
494 515 568 680 684 808 964 
 
 The AHABC is replicated 30 times. The estimated MLE parameters and the associated standard 
deviations are shown in Table 3. For these estimates, the PDF, the reliability function and the bathtub-
shaped hazard rate function are presented in Figure 1-Figure 3. 
 
Table 3-maximum likelihood estimates for 30 replication of AHABC	

 Mean Std 	\ �2.1910 4.5853E-07  [ 0.7726 1.6977E-08 #̂ 4455.2019 9.2597E-04 Q �142.2998 9.6310E-14 
 

 

Figure 1 – q-Weibull probability density function 
 



   
   

 

Figure 2 – q-Weibull reliability function 
 

 

Figure 3 – q-Weibull hazard rate function 
 
 To test the goodness-of-fit, we use the Kolmogorov-Smirnov (KS) test, which compares the 
empirical and the cumulative distribution function (CDF). However, the traditional KS test is not 
applicable in our situation where the parameters of the theoretical distribution have been estimated from 
the same bunch of data used to apply this goodness-of-fit test  [16]. Therefore, a bootstrapped version of 
the KS test  [17] has been developed and applied. The KS test statistic is computed as follows: 
 

 f� � qs� ��@O���� � @���|	\, [, #̂���, �@O������ � @���|	\, [, #̂��		�                              (25) 

 
 where @O���� � �/P is the empirical CDF and @���� � 0, @���|	\, [ , #̂� is theoretical CDF with 

estimated parameters. � bootstrap samples �_ � ���_ , �
_, … , �O_ �, e � 1,2,… , � are generated using Eq. (9) 
with 	\,  [, #̂. The maximum likelihood estimates 	\_ ,  [ _, #̂_ for the e�u sample are obtained by the proposed 



   
   

AHABC. The test statistic f_ is computed with @���_�	\_, [ _, #̂_� in place of @���|	\, [, #̂�. Then, we get � ( 1 observations of the KS test statistic f. The p-value is computed as the number of observations 
where f_ exceeds f� divided by � ( 1. 
 In this example, � � 999, P � 21, f� � 0.1431 and � � 0.4160. With such large p-value, we 
cannot reject the hypothesis that data from Table 2 follows the estimated q-Weibull distribution. Figure 4 
presents the empirical and estimated CDFs of the original sample data. 
 

 

Figure 4 – Empirical and estimated CDFs 
 
 
6. CONCLUSIONS 
 
 This paper presents a novel numerical optimization algorithm to obtain the maximum likelihood 
estimates of q-Weibull parameters, which cannot be analytically solved. An adaptive hybrid artificial bee 
colony (AHABC) algorithm is proposed, which combines the global exploration of ABC and the local 
exploitation of Nelder-Mead simplex search. More importantly, in order to dynamically control the 
exploration and exploitation, the number of function evaluations for local search in one ABC iteration is 
adaptively tuned according to the search status, indexed by the product of total number of scout bees and 
limit value. The proposed algorithm is applied to an example involving failure data characterized by 
bathtub-shaped hazard rate functions, which are adequately modeled by the q-Weibull distribution. 
 
 
7.  REFERENCES 
 

[1] PICOLI, S., R. S. MENDES, and L. C. MALACARNE. "Q-exponential, Weibull, and Q-Weibull 
Distributions: An Empirical Analysis." Physica A: Statistical Mechanics and its 
Applications 324.3, 678-688 (2003). 

[2] ASSIS, EDILSON M., ERNESTO P. BORGES, and SILVIO AB VIEIRA DE MELO. 
"Generalized Q-Weibull Model and the Bathtub Curve." International Journal of Quality & 
Reliability Management 30.7, 720-736 (2013). 



   
   

[3] TSALLIS, CONSTANTINO. "Possible Generalization of Boltzmann-Gibbs Statistics."Journal of 
Statistical Physics 52.1-2, 479-487 (1988). 

[4] COSTA, U. M. S., et al. "An Improved Description of the Dielectric Breakdown in Oxides Based 
on a Generalized Weibull Distribution." Physica A: Statistical Mechanics and its 
Applications 361.1, 209-215 (2006). 

[5] SARTORI, ISABEL, et al. "Reliability Modeling of a Natural Gas Recovery Plant Using Q-
Weibull Distribution." Computer Aided Chemical Engineering 27, 1797-1802 (2009). 

[6] JOSE, K. K., and SHANOJA R. NAIK. "On the Q-Weibull Distribution and Its 
Applications." Communications in Statistics—Theory and Methods 38.6, 912-926 (2009). 

[7] GENSCHEL, ULRIKE, and WILLIAN Q. MEEKER. "A Comparison of Maximum Likelihood 
and Median-rank Regression for Weibull Estimation." Quality Engineering 22.4, 236-255 (2010). 

[8] KARABOGA, DERVIS. "An Idea Based on Honey Bee Swarm for Numerical Optimization". 
Vol. 200. Technical report-tr06, Erciyes University, engineering faculty, computer engineering 
department, (2005). 

[9] ZHU, GUOPU, and SAM KWONG. "Gbest-guided Artificial Bee Colony Algorithm for 
Numerical Function Optimization." Applied Mathematics and Computation 217.7, 3166-3173 
(2010). 

[10] KANG, FEI, JUNJIE LI, and HAOJIN LI. "Artificial Bee Colony Algorithm and Pattern Search 
Hybridized for Global Optimization." Applied Soft Computing 13.4, 1781-1791 (2013). 

[11] KARABOGA, DERVIS, and BEYZA GORKEMLI. "A Quick Artificial Bee Colony (qABC) 
Algorithm and Its Performance on Optimization Problems." Applied Soft Computing 23, 227-238 
(2014). 

[12] KANG, FEI, JUNJIE LI, and QING XU. "Structural Inverse Analysis by Hybrid Simplex 
Artificial Bee Colony Algorithms." Computers & Structures 87.13, 861-870 (2009). 

[13] NELDER, JOHN A., and ROGER MEAD. "A Simplex Method for Function Minimization." The 
Computer Journal 7.4, 308-313 (1965). 

[14] FAN, SHU-KAI S., and ERWIE ZAHARA. "A Hybrid Simplex Search and Particle Swarm 
Optimization for Unconstrained Optimization." European Journal of Operational Research 181.2, 
527-548 (2007). 

[15] DEB, KALYANMOY. "An Efficient Constraint Handling Method for Genetic 
Algorithms." Computer Methods in Applied Mechanics and Engineering 186.2, 311-338 (2000). 

[16] BLAIN, GABRIEL CONSTANTINO. "Revisiting the Critical Values of the Lilliefors Test: 
Towards the Correct Agrometeorological Use of the Kolmogorov-Smirnov 
Framework." Bragantia 73.2, 192-202 (2014). 

[17] STUTE, WINFRIED, WENCESLAO GONZALES MANTEIGA, and MANUEL PRESEDO 
QUINDIMIL. "Bootstrap Based Goodness-of-fit-tests." Metrika 40.1, 243-256 (1993). 


