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1. INTRODUCTION 
 

 From the Nonextensive Statistical Mechanics reasoning, several probability distributions, known as 

q-distributions, were developed. Since the Nonextensive Statistical Mechanics assumes interdependencies 

among the components of a system, these q-distributions have the ability of modeling complex systems 

whose elements present strong interactions [1, 2]. The search for new probabilistic models to describe this 

kind of systems has substantially increased over the last years [3–5]. The q-distributions have been 

successfully applied to several fields of science and engineering. Among them, we can mention complex 

systems such as cyclones [6], gravitational systems [7], stock market [8, 9], journal citations [10], 

complex DNA structural organization [11], reliability analysis [5], cosmic rays [12], earthquakes [13], 

financial markets [14], internet [15], mechanical stress [16]. 

 Picoli et al. [3] described the basic properties of three distributions of this kind: q-Exponential, q-

Gaussian and 𝑞-Weibull. In another work, Picoli et al. [4] presented a comparative study, where the 𝑞-

Exponential, 𝑞-Weibull, and Weibull distributions were used to investigate frequency distributions of 

basketball baskets, cyclone victims, brand-name drugs by retail sales and highway length. 

 In fact, q-Exponential distribution is obtained by maximizing the non-extensive entropy under 

appropriate constraints[17]. This distribution has two parameters ( q  and η ), differently from the 

Exponential distribution that is one parametric. This feature gives more flexibility to 𝑞 -Exponential 

distribution with regard to its decay for the Probability Density Function (PDF) curve. 

 A prominent point of the 𝑞-Exponential distribution is its ability to model data that presents a 

power law behavior [4] when the 𝑞  parameter lie within the interval (1, 2). Thus, in the context of 

reliability, it is expected that for a given sample with large values (e.g., realizations of rare events), the 𝑞-

Exponential distribution can fit the data well.  

 The stretched exponential provides a compromise between Exponential and power law behaviors. 

As pointed out by Laherrère and Sornette [18], a stretched exponential probability density function (PDF) 

has a tail that is heavier than that of the Exponential PDF but lighter than that of a pure power law PDF. 

The Weibull distribution, for example, presents a behavior of stretched exponential when its shape 

parameter lies between 0 and 1. 

 Another important characteristic of the q-Exponential is its ability in model the degradation or the 

improvement of a system. These features may indicate the q-Exponential distribution as an alternative to 

the Weibull distribution. However, these distributions have different origins: while the q-Exponential 

distribution arises from the nonextensive formalism [19], the physical model that justifies the Weibull 

distribution stems from the theory of extreme values [20]. 

  
 



   
   

2. OBJECTIVES OF THE WORK 
 

 The present work focuses on the 𝑞-Exponential MLE. It is worth mentioning that, in order to obtain 

analytical expressions for estimators of 𝑞-Exponential  parameters, it is necessary to solve a complicated 

set of equations. In this way, Shalizi [21] and Bercher and Vignat [22] have shown that a 

reparameterization for that set of equations is required. However, this approach allows obtaining 

analytical expressions for the MLE only when 1 < q < 2 and, however, the q-Exponential distribution is 

also defined for q < 1.  Such a parameter range corresponds to a hazard rate behavior with relevant 

applications, namely the reliability modeling of degrading systems. In this way, with the exception of the 

case 1 < q < 2 [21], analytical expressions for the maximum likelihood estimators of q-Exponential are 

very difficult to be obtained due to the intricate derivatives of the log-likelihood function. 

 Thus, in this work the MLE for the parameters of a q-Exponential distribution are numerically 

derived through two different optimization algorithms: Nelder-Mead [23] and Particle Swarm 

Optimization (PSO) [24]. The results obtained from these two approaches will be compared by means of 

bias and MSE (Mean Squared Error). An application example in the context of fatigue life data is 

developed. 

 

 

3. THE 𝒒-EXPONENTIAL DISTRIBUTION  

 
 The following expression represents the q-Exponential PDF: 

 

𝑓𝑞(𝑡) =
(2−𝑞)

𝜂
exp𝑞 [− (

𝑡

𝜂
)],        (1) 

 
for q < 2 and  > 0. The shape of the distribution is determined by the parameter 𝑞,  is the scale 

parameter and exp𝑞(𝑥) is the 𝑞-Exponential function defined as: 

 

exp𝑞(𝑥) = {
[1 + (1 − 𝑞)𝑥]

1

1−𝑞 , 𝑖𝑓 [1 + (1 − 𝑞)𝑥] ≥ 0

0,                                       otherwise,

,     (2) 

 

where 𝑥 and 𝑞  ℝ. From the definition of 𝑞-Exponential function, it is possible to rewrite the density of 

the 𝑞-Exponential distribution as: 

 

𝑓𝑞(𝑡) =
(2−𝑞)[1−

(1−𝑞)𝑡

𝜂
]

1
1−𝑞

𝜂
,         (3) 

  
 
for q < 2 and  > 0. According to the parameter 𝑞, the support 𝑡 is changed as follows: 

 



   
   

𝑡 ∈

{
 
 

 
 [0;  ∞),   𝑞 ≥ 1.

[0;
1

1

𝜂
(1−𝑞)

) ,    𝑞 < 1.
         (4) 

 
 As it can be observed in the PDF of the 𝑞-Exponential, there are two parameters (𝑞  and ), 

differently from the Exponential distribution that has just one parameter (). This feature gives more 

flexibility to the 𝑞 -Exponential distribution with regard to its decay. Note that, the 𝑞 -Exponential 

distribution is a generalization of the Exponential distribution. This fact can be verified when its 

parameter 𝑞 tends to one. 

 Observe yet that for the q-Exponential distribution, the 𝑞 parameter together with the parameter  

determine the decay of the PDF curve. In fact, for a fixed , the 𝑞-Exponential presents a slower decay 

for 1 <  𝑞 <  2 (Power Law characteristic) and a faster decay for 𝑞 <  1; for a fixed 𝑞 , we have a 

similar behavior of the Exponential distribution (𝑞 →  1), i.e., as the value of the parameter  increases it 

is observed a slower decay of the PDF. Figure 1Figure 2 present the 𝑞 -Exponential PDF for some 

possible values of 𝑞 and . 

 

  
Figure 1 - Behavior of the q-Exponential PDF for a 

fixed parameter . 

Figure 2 - Behavior of the q-Exponential PDF for a 

fixed parameter 𝒒. 

 
 
 The cumulative distribution function (CDF) of the q-Exponential is defined by the following 

expression: 

 

𝐹𝑞(𝑡) =

{
 

 1 − [1 −
(1−𝑞)𝑡

𝜂
]

2−𝑞

1−𝑞
𝑡 ≥ 0,

0,   otherwise.

        (5) 

 
 A 𝑞-Exponential random number generator can be obtained inverting Fq(t) as follows: 

 



   
   

𝑇 =
𝜂[1−(𝑈)

1−𝑞
2−𝑞]

1−𝑞
,           (6) 

 
where 𝑈 is a uniform random variable defined in [0,1]. 
 An important characteristic of the 𝑞-Exponential distribution, especially in the reliability context, is 

that the 𝑞-Exponential hazard rate function is not necessarily constant as occurs for the Exponential 

distribution. In fact, we can model two additional behaviors for the hazard rate. Let us first define the 

hazard rate: 

 

ℎ𝑞(𝑡) =
𝑓𝑞(𝑡)

𝑅𝑞(𝑡)
= 

(2−𝑞)[1−
(1−𝑞)𝑡
𝜂 ]

1
1−𝑞

𝜂

[1−
(1−𝑞)𝑡

𝜂
]

2−𝑞
1−𝑞

=
(2−𝑞)

𝜂
[1 −

(1−𝑞)𝑡

𝜂
]

𝑞−1

1−𝑞      (7) 

 
 
 Thus, the q-Exponential distribution is able to represent three different types of hazard rate 

behaviors depending on the values the parameter q. For 1 < q < 2, hq(t) is a decreasing monotonic 

function (Figure 3), for q < 1, hq(t) increases monotonically (Figure 4), while for q  1 we have a 

constant hazard rate. 

  

Figure 3 - q-Exponential with decreasing hq(t)  Figure 4 - q-Exponential with increasing hq(t)  

 

 

4. ESTIMATION OF THE MLE BY OPTIMIZATION METHODS 
 

In order to compute the MLE of q and  let X = {x1, x2,..., xn} be a random sample of size n. From 

this sample, it is possible to write the likelihood function for the observed sample as:  

 

𝐿(𝑥, 𝑞, 𝜂) = (2 − 𝑞)𝑛 (
1

𝜂
)
𝑛
∏ [1 −

(1−𝑞)𝑥𝑖

𝜂
]

1

1−𝑞𝑛
𝑖=1         (8) 

 
and the log-likelihood function as:  

 

ℒ(𝑥, 𝑦, 𝑟, 𝛽, 𝑞, 𝜂) = 𝑛 𝑙𝑛(2 − 𝑞) + 𝑛 𝑙𝑛 (
1

𝜂
) +

1

1−𝑞
∑ 𝑙𝑛 [1 −

(1−𝑞)𝑥𝑖

𝜂
]𝑛

𝑖=1 .    (9) 

 



   
   

Thus, using an algorithm to maximize the log-likelihood function, we can obtain the estimates for 

the parameters 𝑞 and . In this work, we will call these estimates as 𝑞̂ and 𝜂̂, and they will be obtained by 

PSO and Nelder-Mead algorithm, which are described in Sections 4.1 and 4.2, respectively. 

 
4.1 Particle Swarm Optimization  
 

PSO [24] is a probabilistic optimization heuristic based on the motion of groups of organisms (e.g., 

flocks of birds, schools of fishes), which optimizes a problem from a population of candidate solutions 

(particles). According to update equations over the particles' position and velocities, the candidate 

solutions explore the search-space. Each particle's movement is influenced by its own best position and 

also by its neighbors' best. Thus, it is expected that particles move toward the best solutions. PSO has 

been successfully applied to different contexts. For example, [24–31] apply PSO in the adjustment of the 

hyperparameters that emerge in the training problem of support vector machines (SVM). Indeed, Lin et al. 

[25] , Lins et al. [32] and Droguett et al. [31] use PSO not only to adjust the SVM hyperparameters, but 

also for variable selection. In the specific context of parameter estimation, PSO has been used to estimate 

the parameters of a generalized renewal process in order to establish preventive maintenance policies [33], 

to estimate parameters of mathematical models related to chemical processes [34] and to obtain maximum 

likelihood estimates for the parameters of a mixture of two Weibull distributions [35]. 

For a particle j, j = 1, ..., npart , we have the following features:  

 Current position in the search space (sj); 

 Best position it has visited so far (pj); 

 Velocity (vj); 

 Fitness (fj), which is the value of the objective function, which in this work is the 𝑞-Exponential 

log-likelihood (ℒ(𝑥, 𝑦, 𝑟, 𝛽, 𝑞, 𝜂) = 𝑛 𝑙𝑛(2 − 𝑞) + 𝑛 𝑙𝑛 (
1

𝜂
) +

1

1−𝑞
∑ 𝑙𝑛 [1 −

(1−𝑞)𝑥𝑖

𝜂
]𝑛

𝑖=1 .  

  (9). 

Every particle is a potential solution for the considered optimization problem, which involves a d-

dimensional search space with each dimension related to one of the decision variables. Thus, sj, pj and vj 

are all d-dimensional vectors, whose entries are associated with the decision variables of the problem. In 

the maximum likelihood optimization problem related to the 𝑞-Weibull distribution, d= 2 and the first and 

second entries of sj, pj and vj are related to  and 𝑞, respectively. 

The velocity and position update equations are defined as follows: 

 

𝑣𝑗𝑘(𝑟 + 1) = 𝜒{𝑣𝑗𝑘(𝑟) + 𝑐1𝑢1[𝑝𝑗𝑘(𝑟) − 𝑠𝑗𝑘(𝑟)] + 𝑐2𝑢2[𝑝𝑔𝑘(𝑟) − 𝑠𝑗𝑘(𝑟)]},   (10) 

𝑠𝑗𝑘(𝑟 + 1) = 𝑠𝑗𝑘(𝑟) + 𝑣𝑗𝑘(𝑟 + 1),        (11) 

 

where r is the iteration number,  is the constriction factor that avoid velocity explosion during PSO 

iterations [35], c1 and c2 are positive constants, u1 and u2 are independent uniform random numbers in [0, 

1], and pgk is the k-th entry of vector pg related to the best position that has been found by any neighbor of 

particle j. 

Whenever an infeasible particle emerges - with respect to the constraints over  and 𝑞 to assure the 

probabilistic characteristics of the 𝑞-Exponential distribution as well as to the logarithm arguments in Eq. 

09 - its velocity and its position are not altered and its fitness is not evaluated so as to avoid infeasible pj 

and pg. In this way, infeasible particles may become feasible in subsequent iterations due to the influence 

of their own and neighbor's feasible best positions. This approach is known as "let particles fly" [24].  

The update of velocities and positions and fitness evaluations are repeated until one of the 

following stop criteria is met: 

a) Maximum number of iterations (niter). 



   
   

b) The global best particle is the same for 10% of niter. In this case, the iteration number in which 

the best particle has been found is used, as commented in the previous subsection. 

c) The global best fitness values in two consecutive iterations are different, but such a difference is 

less than a predefined tolerance . 

 
4.2 Nelder–Mead 
 

The Nelder–Mead method, also known as Downhill Simplex Method, is a numerical approach 

commonly applied to nonlinear optimization problems for which derivatives may not be known. It is used 

to find the minimum or maximum of an objective function in a multi-dimensional space. This method has 

been used in several studies with the aim of maximizing the log-likelihood function and to estimate the 

parameters of various probability distributions in many areas such as: Ecology [37], Medicine [36, 37], 

Power Systems [38, 39] and Chemical Engineering [42]. 

This method has been one of the direct search methods most used in unconstrained optimization 

problem of a function of 𝑛 variables. The following characteristics make it one of the most popular 

methods of optimization [43]:  

 Ease of computational implementation; 

 Calculations of the derivatives of the objective function are not required; 

 Few evaluations of the objective function are required; 

 The value of the objective function sharply decreases in the first iterations. 

The method uses the concept of a simplex, which is a polytope with 𝑛 + 1  vertices in 𝑛 

dimensions. 
 

Consider the problem of unconstrained minimization: 

 

    𝑓(𝑥)xϵℜn
Min ;  Where, f: ℜn ⟶ℜ. 

In one iteration of the Nelder-Mead method, the n +  1 vertices of the simplex, x1, x2, … ,  xn+1 

belonging to ℜn  are ordered according to the growth of the values of f , i.e: f(x1) ≤ f(x2) ≤ ⋯ ≤
f( xn+1), where x1 is the best vertex and  xn+1 is the worst vertex. 

The repositioning of these vertices takes into consideration four coefficients: 

 

 Reflection coefficient (𝜌) 

 Expansion coefficient (𝜒) 

 Contraction coefficient (𝛾) 

 Reduction coefficient (𝜎) 

 

These coefficients must satisfy the following restrictions[23]: ρ > 0, χ > 1, 0 < γ < 1 and 0 <
σ < 1. The default choice of these coefficients is given by: ρ = 1, χ = 2, γ = 1/2 and σ = 1/2 

The method attempts to replace the worst vertex of the simplex by one with better value. The new 

vertex is obtained by reflecting, expansion or contraction of the worst vertex along the line through this 

vertex and the centroid of the best n vertices. At each iteration, the worst vertex is replaced by a new 

vertex or the simplex is reduced around the better vertex. 

The following steps correspond to an interaction of the Nelder-Mead algorithm[43]: 

Step 1 - Sort: Sort the 𝑛 +  1 vertices: 𝑓(𝑥1) ≤ 𝑓(𝑥2) ≤ ⋯ ≤ 𝑓( 𝑥𝑛+1); 

Step 2- Centroid: Calculate the centroid of the 𝑛 best vertices: 𝑥̅ = ∑
𝑥𝑖

𝑛
𝑛
𝑖=1  

Step 3- Reflected vertex: Calculate the reflected vertex (𝑥𝑟): 𝑥𝑟 = 𝑥̅ + 𝜌(𝑥̅ − 𝑥𝑛+1) 
If 𝑓(𝑥1) ≤ 𝑓(𝑥r) ≤ 𝑓( 𝑥𝑛), then do  𝑥𝑛+1 =  𝑥𝑟 and finalize the iteration.  



   
   

Step 4- Expansion: If 𝑓(𝑥r) ≤ 𝑓(𝑥1), calculate the expanded vertex (𝑥𝑒): 𝑥𝑒 = 𝑥̅ + 𝜒(𝑥𝑟 − 𝑥̅) 
If 𝑓(𝑥𝑒) ≤ 𝑓(𝑥r), then do  𝑥𝑛+1 =  𝑥𝑒 and finalize the iteration, else  𝑥𝑛+1 =  𝑥𝑟 and finalize the iteration. 

Step 5- Contraction: If 𝑓(𝑥r) ≥ 𝑓(𝑥n) 
5.1 External: If f(xn) ≤ f(xr) ≤ f( xn+1), calculate the external contraction vertex (𝑥𝑐𝑒): 𝑥𝑐𝑒 =

𝑥̅ + 𝛾(𝑥𝑟 − 𝑥̅) 
If 𝑓(𝑥𝑐𝑒) ≤ 𝑓(𝑥r), then do  𝑥𝑛+1 =  𝑥𝑐𝑒 and finalize the iteration, else go to step 6. 

5.2 Internal: If 𝑓(𝑥r) ≥ 𝑓(𝑥n+1), calculate the internal contraction vertex (𝑥𝑐𝑖):𝑥𝑐𝑖 = 𝑥̅ − 𝛾(𝑥̅ −
𝑥𝑛+1) 
If 𝑓(𝑥𝑐𝑖) ≤ 𝑓(𝑥n+1), then do  𝑥𝑛+1 =  𝑥𝑐𝑖 and finalize the iteration, else go to step 6. 

Step 6- Reduction: Calculate de vectors 𝑣𝑖 = 𝑥1 + 𝜎(𝑥𝑖 − 𝑥1), 𝑖 =  2, … , 𝑛 + 1. 
The vertices (not ordered), for the next iteration are: 𝑥1, 𝑣2, … , 𝑣𝑛+1. 

 

 Given a tolerance  𝛥𝑡𝑜𝑙, the following stop criterion [23] takes into account the function value in 

the simplex vertices: √∑
(𝑓(𝑥𝑖)−𝑓(𝑥̅))

2

𝑛

𝑛+1
𝑖=1 < 𝛥𝑡𝑜𝑙 

 

5. NUMERICAL EXPERIMENTS 
 

 In this section, some simulations will be presented in order to assess the quality of estimates 

obtained from PSO and Nelder-Mead methods. We will consider sample sizes equal to 100, 500 and 1000. 

For the analysis of the MLE we consider the following sets of initial parameters: (, q) = (5, 1.5), (5, 1), 

(5, 0.5), and (5, -1). These sets are chosen in order to consider the four important situations for the 

parameter q: 1 < 𝑞 < 2; 𝑞 → 1; 0 < 𝑞 < 1 and 𝑞 < 0. For each set of parameters we generate, by Eq. 06, 

1000 samples. Thus, for each one of these samples, we obtained estimates for 𝑞 and  by PSO and 

Nelder-Mead algorithms, which resulted in a total of 1000 estimates for each parameter. Table 1 presents 

the mean of these 1000 estimates for each parameter (𝜂̂ and 𝑞̂). Moreover, we reported in Table 1 the 

related bias and MSE. For an estimator 𝜃 of 𝜃, we have that bias(𝜃̂) = 𝐸(𝜃) − 𝜃 and MSE = 𝑉𝑎𝑟(𝜃) +

𝑏𝑖𝑎𝑠(𝜃)2. 

 

Table 1 - Simulation results for 1000 replications 

  PSO Nelder-Mead 

(𝜼, 𝒒) 𝒏 𝜼̂ 𝒒̂ 
Bias 

(𝜼̂) 

Bias 

(𝒒̂) 

MSE 

(𝜼̂) 

MSE 

(𝒒̂) 
𝜼̂ 𝒒̂ 

Bias 

(𝜼̂) 

Bias 

(𝒒̂) 

MSE 

(𝜼̂) 

MSE 

(𝒒̂) 

(5, 1.5) 

100 5.3316 1.4879 0.3316 -0.0121 2.1541 0.0029 5.3317 1.4879 0.3317 -0.0121 2.1550 0.0029 

500 5.0713 1.4982 0.0713 -0.0018 0.3700 0.0005 5.0713 1.4982 0.0713 -0.0018 0.3702 0.0005 

1000 5.0432 1.4983 0.0432 -0.0017 0.1743 0.0003 5.0432 1.4983 0.0432 -0.0017 0.1743 0.0003 

(5, 1) 

100 5.4545 0.9546 0.4545 -0.0454 2.2459 0.0199 5.4624 0.9540 0.4624 -0.0460 2.3019 0.0204 

500 5.1078 0.9886 0.1078 -0.0114 0.3042 0.0025 5.1175 0.9880 0.1175 -0.0120 0.3614 0.0027 

1000 5.0566 0.9954 0.0566 -0.0046 0.1424 0.0012 5.0716 0.9945 0.0716 -0.0055 0.2311 0.0015 

(5, 0.5) 

100 5.7744 0.3627 0.7744 -0.1373 3.4889 0.0952 5.8005 0.3592 0.8005 -0.1408 3.6409 0.0984 

500 5.1240 0.4767 0.1240 -0.0233 0.3339 0.0080 5.1767 0.4708 0.1767 -0.0292 0.6679 0.0119 

1000 5.0731 0.4867 0.0731 -0.0133 0.1444 0.0034 5.1905 0.4738 0.1905 -0.0262 0.8922 0.0119 

(5, -1) 

100 7.8208 -2.248 2.8208 -1.2482 54.1635 10.064 7.51025 -2.115 2.5103 -1.1153 33.1753 6.1973 

500 5.3779 -1.1686 0.3779 -0.1686 0.9296 0.1657 5.3737 -1.167 0.3737 -0.1668 0.9220 0.1643 

1000 5.1939 -1.0869 0.1939 -0.0869 0.3369 0.0583 5.1913 -1.086 0.1913 -0.0858 0.3342 0.0579 

 



   
   
 From Table 1, we can observe that the estimates obtained by PSO and Nelder-Mead algorithms 

present bias and MSE that decrease as the sample size (𝑛) increases, corroborating the consistency of the 

MLE. Also, PSO presents better performance than Nelder-Mead as the former has smaller values for the 

bias and MSE for the PSO. Despite this, it is important to mention that, in most of the cases, the 

difference between the bias and MSE obtained from the two algorithms is very small. Also note that 

identical results were obtained from both algorithms for the MLE estimates, bias and MSE in the case of 

𝜂 = 5 and 𝑞 = 1.5. Another important point is that when we deal with the case (𝜂, 𝑞) = (5,−1) and 𝑛 =
100, the PSO and Nelder-Mead method present high values for bias and MSE.  

 

 

6. APPLICATION EXAMPLE 
 

 In this section, we provide estimates of the 𝑞-Exponential parameters for fatigue life of high-

strength steel that was first reported in [44]. Once this data was obtained from a very resistant material, it 

is natural that the cycles until failure present great orders of magnitude. Another important point, is that 

according to Basquin’s law, the lifetime of a material increases as a power law [45], and this type of 

behavior can be modeled by a 𝑞-Exponential distribution when 1 < 𝑞 < 2. 

 We will also consider the modeling of data by a Weibull distribution in order to compare the 

efficiency of these two distributions for this kind of data.  

 From [44], we get data obtained from a specimen of high-strength steel with diameter 3 mm (Ø3). 

The data sets given in terms of number of cycles to failure are presented in  

Table 2: 

 

Table 2. Ø3 specimen fatigue test data. 

Specimen 

Number 

Fatigue Life 

(number of cycles to failure) 

Specimen 

Number 

Fatigue Life 

(number of cycles to failure) 

Specimen 

Number 

Fatigue Life 

(number of cycles to failure) 

1 1017286 7 13007977 13 376711232 

2 2989152 8 25303118 14 731957760 

3 4059346 9 33621704 15 9444513800 

4 4256299 10 55951560 16 9912163300 

5 8376572 11 101155984 17 9918688300 

6 9560400 12 144322192 18 9921105900 

 

 For this example we will use PSO and Nelder-Mead, in order to obtain the 𝑞 -Exponential 

parameters.  

 The results for the point estimates, when we use PSO approach was: 𝜂̂ = 4688695.8075, 𝑞̂ =
1.7521 and the result for the log-likelihood was  ℒ̂ = −374.2125. The 30 PSO replications essentially 

provided the same estimates with standard deviations (0.2236, 3.3262E-9 and 5.7800E-14 for 𝜂, 𝑞 and ℒ 

estimates, respectively). For the Nelder-Mead approach, the estimated MLE parameters are 𝜂̂ = 4704629 

and 𝑞̂ =  1.7519, with ℒ̂ = −374.2075.  

 We can observe that both approaches provide similar results. The 𝑞 estimates lie within (1, 2), 

which indicates a power law behavior.  

 Using the Weibull distribution to model the data of this example, we obtain the following results 

for the parameters: 0.3366 (shape parameter) and 417229710 (scale parameter). For the Weibull 

distribution, when we have the result of the shape parameter between 0 and 1 it is characterized a 

behavior of stretched exponential, which in fact is expected for the data of the example, once extremely 



   
   
large values are present. In this example, the parameters' estimates of the Weibull distribution are 

obtained by analytical expression in the case of the scale parameter and by the Newton-Raphson method 

for the  shape parameter [46]. 

 In order to evaluate the adjustments of this data by a 𝑞-Exponential and Weibull distribution, we 

use the bootstrapped Kolmogorov-Smirnov test (K-S boot). In fact, the one-sample Kolmogorov-Smirnov 

test (K-S test) is not very useful in practice once it requires that the distribution must be completely 

specified with all parameters known beforehand [47]. Thus, in this work a bootstrapped version of a K-S 

test was used as alternative to overcome this problem [48]. This method results in accurate asymptotic 

approximations of the 𝑝-values [49]. Table 3 present the result for the estimated parameters for the 𝑞-

Exponential and Weibull distributions, together with the results for the K-S boot. 

 

Table 3. Comparing Weibull vs 𝒒-Exponential. 

Parameters 

(𝒒-Exponential) 

PSO 

K-S Boot 

(𝒒-Exponential) 

PSO 

Parameters 

(𝒒-Exponential) 

Nelder-Mead 

K-S Boot 

(𝒒-Exponential) 

Nelder-Mead 

Parameters 

(Weibull) 

K-S Boot 

(Weibull) 

𝜂̂ 𝑞̂ K-S 

(𝑫𝟎) 
p-

value 
𝜂̂ 𝑞̂ K-S 

(𝑫𝟎) 
p-

value 
Shape 

Parameter 

Scale 

Parameter 

K-S 

(𝑫𝟎) 
p-value 

4688695.8075 1.7521 0.1327 0.4860 4704629 1.7519 0.1329 0.4895 0.3366 417229710 0.1648 0.2047 

 
 From the results presents in Table 3 we observe that, although the Weibull fit is significant, it is 

clear that the 𝑞-Exponential distribution showed a better fit to the data (either by PSO or Nelder-Mead). 

Indeed, we observe for this example 𝑝-values equal to 0.2047 (for the Weibull distribution), 0.4860 (for 

the 𝑞-Exponential distribution – PSO) and 0.4895 (for the 𝑞-Exponential distribution – Nelder-Mead). 

Clearly the 𝑞-Exponential distribution showed a better efficiency, since the data in this example are 

constituted of extremely large values, with 109 as order of magnitude. As mentioned previously, the PDF 

with power law behavior presents a tail heavier than that of a stretched exponential, thus for data with 

extremely large values the 𝑞-Exponential model is expected to provide a better fit when compared to the 

adjustment of a Weibull distribution.  

 Figure 5 present the empirical and theoretical CDFs (Weibull and 𝑞-Exponential) for this example. 

Once the estimates obtained from the two methods (PSO and Nelder-Mead) are very similar, we choose 

the estimates obtained from the PSO to construct the curves in the graphic. The figure is plotted in 

logarithmic scale in order to provide a better visualization of the empirical CDF, as the data set contains 

extremely large values. As we can note from Figure 5, the empirical curve is very close to the 𝑞 -

Exponential CDF, confirming that the 𝑞-Exponential model is more efficient than the Weibull distribution 

when we deal with the type of data presented in this example.  

 



   
   

Figure 5 - Empirical and Theoretical (𝒒-Exponential and Weibull) CDFs. 

 

 

 

7. CONCLUSIONS 
 

 In this paper, we have addressed the problem of estimating the 𝑞-Exponential parameters by the 

maximum likelihood method. Once the analytical expression for these parameters are very difficult to be 

obtained, we use the PSO and Nelder-Mead algorithms in order to maximize the log-likelihood function 

of the 𝑞-Exponential distribution.  

 From the simulation experiments, it was shown that, for the point estimates, the absolute bias and 

the MSE values related to the estimation of 𝜂 and 𝑞 parameters via maximum likelihood decreases as the 

sample size increases, indicating the consistency of the MLE. This fact was observed for both algorithms 

(PSO and Nelder-Mead). Another important particularity of the point estimates is that the PSO algorithm 

generally presents the lower values for the bias and MSE although the bias and MSE for the Nelder-Mead 

algorithm were also very good. 

 For the application example, the Weibull distribution presented significant adjustment, however, 

the fit by a 𝑞-Exponential distribution presented a 𝑝-value clearly more significant. Thus, data with 

extremely large values are well fitted by a 𝑞-Exponential distribution, given that this distribution can 

model the power law behavior when 1 < 𝑞 < 2, which is characterized by a PDF with a heavy tail. 

Therefore, the 𝑞-Exponential distribution can be used in several applications of reliability engineering.  
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