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1. INTRODUCTION

Oil and gas producers continue to push offsho@epts into the arduous and colder Arctic
frontiers, driven primarily by the need to securtufe oil and gas reserves [1]. However, offshoretié
projects have a high degree of technical and sooi@aplexity. The technological challenges of dnijiat
remote location coupled with the extreme weatherditions makes the operation of drilling waste
handling in this environment very demanding andkyri§2]. Furthermore, due to the sensitive
environment to disruption, on one hand, but hansti anforgiving on the other, the environmental
impacts as a result of inappropriate handling efdhilling waste can take longer to heal and castem
to remediate [3, 4].

The competence to reduce the adverse impacts winiad events during the drilling waste
handling activities depends in part upon the eiffeciess of our rigorous safety plan and clear
understanding of the effect of the Arctic operatémyironment on the system [5]. In addition, towsas
an environmentally sound and economically feasiblaste handling system, identification and
assessment of the peculiar Arctic risk influendiactors (RIF’s) play a crucial role [6, 7]. The majoal
is to manage the major risk elements related todifileng waste handling activities and prevent the
pollution of the Arctic marine environment. The etliocus is to assess whether or not the levakkfis
acceptable (tolerable) as per the statutory letgisia and the company risk acceptance criteria.

The application of Bayesian Network (BN) to rigsassment and decision-making in the offshore
operation, are getting popularity and have beecudised in several literatures [8]. For instanceerAand
Rettedal [9] proposed a "fully Bayesian approad” quantifying the major risks in offshore industry
with a focus on observable quantities and use bjestive probabilities. For assessing and quamitifyi
ecological risks in catchment management, Pollieibal. [10] developed a methodology by using
parameterization and evaluation of a Bayesian mtwicee and Lee [11] proposed probabilistic risk
assessment model, for evaluating waste disposansptby connecting the results of probabilistic
inference from the Bayesian network with the consege evaluation.

However, most of the BN based risk models useaffshore industries are developed for off-the-
shelf systems, for non-Arctic offshore operatioartker, the available models have been mainly fedus
in identifying the hazard and quantifying the rikd lack particularly the consideration of the efffef
the operating environment on the risk profile. Thisconsidered as a big drawback, especially in a
complex operational environment such as the Anmagion [12, 13]. Typically, the hazards and risks
associated with Arctic offshore drilling waste htimgl operations will differ vastly depending on tice
conditions, negative sea and air temperature, acirs affecting visibility such as heavy fog, biogv
snow, and lengthy period of darkness [2, 5, 7, Irlthe Barents Sea — part of the Norwegian Arctic,
weather related factors are estimated to cause thaned0 percent of fatal accidents during craftiad,
including drilling waste container lifting [15]. Riner, in some areas of the Arctic region, envinental
and climatic factors causes nearly 65 — 70 peroérgxtra costs during drilling and drilling waste
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handling activities [16]. Hence, offshore drillingaste handling strategies, in the hostile Arctigioe,
must take account of the unique risks due to idiceJoading, remoteness, very low temperaturesdwi
chill effects, and etc., in addition to the ‘contienal’ or ‘tolerable’ risks [1, 7, 13].

Hence, to consider the complex and fast-changatgre of the Arctic during risk assessment, this
paper proposes a Bayesian Network based risk m@i¢iB-RM) for Arctic drilling waste handling
practices. Bayesian belief networks are particulaseful in risk analysis as they do not requirsplete
knowledge of the relation between causes and sff8ft The paper seeks to determine the probagsiliti
of the potential hazards, risks, and consequentdékeounwanted events by considering the peculiar
Arctic risk influencing factors (RIF's) such as svsiorms, atmospheric and sea spray icing, negative
and sea temperature. The rest of the paper is iaeghas follows: Section 2 presents the basic quace
of static and hybrid Bayesian network. Section \B#giigates the unique Arctic risk influencing fasto
that affects the handling of drilling wastes in #hetic region. Section 4 presents the proposedeBiayn
Network based risk assessment model (BN-B-RM). i®&ed illustrates Arctic drilling waste handling
scenario case study and Secion 6 provides the usianl

2. STATIC AND HYBRID BAYESIAN NETWORK — BASIC CONCEPTS

Static Bayesian networks (BN) are a probabiligtiaphical model consists of a qualitative part, a
directed acyclic graph (DAG), where the nodes regmerandom variables and a quantitative partf afse
conditional probability functions [17]. The nodesncbe discrete or continuous, and may or may not be
observable and the arcs (from parent to child)esgmt the conditional dependencies or the causeteff
relationships among the variables [17]. Parent scate nodes with links pointing towards the child
nodes. Nodes that are not connected represenblesiahich are conditionally independent of eadtent
Further, when BN contain discrete and continuougakées (nodes) generally it is called a hybrid
Bayesian network (HBN).

Figure 1 shows the basic qualitative part of a Baye network, for Arctic drilling waste handling
practices, and illustrates the conditional indegerits and dependencies of the main random vasiable
The variables considered, in this paper, are: indkiencing factors (RIF’s), drilling waste handiin
systems or component, health risks, safety righd,emvironmental risks. For instance, a shale shike
component of waste handling system) ceases toifumaet fail when there is freezing temperature &ed
accretions (which are the RIF’s). Then, the shhéker failure may lead to drilling waste chemigaills
(i.e. environmental hazards) and may have manréifit occupational hazards, i.e. health and safety
hazards.

Drilling waste
handling system (A
Environmental
risk (E}

Figure 1. Basic Bayesian Network representing dantil dependencies
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- Risk influencing factors (designated as Z) includaegative air and sea temperature, severe
snowstorms, wind-chill effect, atmospheric and sgay icing, icicles, visibility reducing factorand
polar lows.

- Drilling waste handling system (W) comprises offehdischarge, offshore re-injection, and skip- and
ship.

- Health risk (H) is a chance or probability that aste handling worker will experience health effba
to direct and indirect effect of RIF’s.

- Safety risk (S) is a likelihood that a waste hamgllpersonnel experience physical injures due toRIF
effect and system failures.

- Environmental risk (E) is a chance or likelihood tbk pollution of the Arctic marine environment
because of accident. Mainly, due to indirect eftd¢he RIF's.

Thequantitative part of a Bayesian network structure can be septed as a product of conditional
distribution of each nod¥, given its parents nodgzarents(X,) . Each node is described by the

conditional probability function of that variabl&@hen, the joint probability distributions, consiihey
discretevariable, can generally be expressed as:

n

Pr(Xy, X5, X, ) = [ PHX; | parent(X,)) (1)

Where:
. Pr{Xi | parents{Xi)}is the conditional distribution mass function ofieoX; .

In general, for the case of drilling waste handlimggrations, the probability of waste handling
system or component failur&\ (i.e. a child node) is conditionally dependenttha RIF's ) (i.e. a
parent node). In addition, the probability of trealth risks ), the safety risksg) and the environmental
risks €) are conditionally independent to each other, ithee system or component failur&g) (@and the
RIF’s (). However, this doesn’t mean that SandE are totally independent. Hence, for the givenicstat
BN structure (i.e. Figure 1), assuming that alliatales arediscrete the joint probability function, as a
product of conditional probabilities then can bpressed as:

PZW, HSB = PZPW [ZPH W)RSIWHE|W )

where:

= P(2)is the marginal probability function @ and

= P(W|Z) P(H|W), P(S|W) andP(E|W) are conditional probability function &, H, S,andE,
respectively. A detailed explanation of the maagisnd conditional probabilities is included in
Section 4.

3. RISKINFLUENCING FACTORS (RIFs) IN THE ARCTIC

Aven [18] defines risk influencing factors (RIF'a$ factors that potentially affect the barrierd an
barrier performance. In general term a barrier imemsure which is put in to prevent the releasa of
hazard or the occurrence of a top event once thartias released, and barriers may be physicabr n
physical [6]. In the Arctic offshore dilling wasteandling operations, the predominant RIF's are the



Porisco PSD ABRISCO

climatic and environmental conditions. The predaninRIF’s in the Arctic region are identified and
briefly discussed below.

3.1 Negative Temperature

Negative temperatures reduce the performance 8ingriwaste handling system, ranging from
primary shale shaker and mud cleaner to screw gonvén addition, for most drilling activity in the
Arctic region, wells are recommended to be drillgth water-based drilling fluids. To meet the dnig-
performance demands, thus the water must be kaptffieezing or the system ceases to function [h9].
worst case, the primary shale shaker, mud cleaswew conveyor, and the vacuum pump can be
destroyed by the pressure of ice expansion. Moredkie viscosity of water increases significantyy a
temperature falls. Higher viscosity mean slowewfemd mixing rates within the waste handling system
and consequently increased the overall energy defid&n.

3.2 Wind-chill effect

The wind-chill effect is the perceived decreasaiintemperature felt by the body on exposed skin
due to the flow of air [13]. In general, the effetthe wind-chill will increase with high wind spe& and
in the worst case it can be expected to have outdoding restrictions, for waste handling persdnne
for some specified period of time [20]. Lengthy ipdrof exposure to cold wind without adequate
protection can lead frostbite, hypothermia, andidmst case it can cause freezing to death [20].

3.3 lcing, Snowstorm, Icicles and Polar lows

Figure 2 illustrates the typical icing phenomendha Arctic regions. Icing has various potential
hazards, such as slipping hazards and disablinghegand cranes by locking cables in continuous har
ice [21]. These locking effects on the crane hdgb-tevel potential hazards, and can significaafigct
the waste handling activities. Further, the falliog can cause fractures, bruises, lacerationgcdigons,
as well as permanent injuries for personnel’s wagkit the waste handling site [22].

Figure 2. Typical icing phenomena in Arctic (Photrtesy of ice engineering solutions)

Moreover, significant amount of snowstorms resirmtcess to drilling waste handling equipment
and instruments and hinders the process of callgctransporting, and treatment of the drilling teas
Further, working in the snowstorm has the potetialause an increased incidences and injurie, &sic
hypothermia, infections from frost bite, and in@es the risk to persons with known asthma or
cardiovascular disease [20].

Furthermore, icicles can pose potential safety fuszéor personnel’s and structural hazards for
waste handling equipment’s. An icicle is a spikdoaf formed when water dripping or falling from an
object freezes; and it normally has a very shamgeedlVhen icicles falls as a result of change in air
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temperature or heavy ice deposit, it can causewgemjury for personnel involved in the waste Hangl
activities or damages the near-by waste handlingpatent’s.

Polar lows are the other RIF and generally theyaaphenomenon formed when cold air flow over
warmer water and leads to an atmospheric instafil8]. In the Barents Sea, polar lows occur fretlye
up to 15 times monthly and generally in the pefioth October to May [23]. They are known to possess
heavy snowstorms and icing as their typical featlifeese typical characteristics are source of uario
potential hazards, during waste handling activities

3.4 Visibility reducing factors

These factors include heavy fog, blowing snow, tengeriod of darkness; and they are the main
contributors for the poor visibility during offstemwaste handling activities in the Barents Sea.r Poo
visibility are the biggest contributors to the aalérisk of fatal accidents in the Arctic offshasperations
[24].

4. BAYESIAN NETWORK BASED RISK ASSESSMENT MODEL (BN-B- RM)

A step-by-step approach for implementing the Bayesetwork based risk assessment, for Arctic
drilling waste handling operations, is providedrigure 2. The proposed methodology has 7-stepstand
starts with identifying the predominant risk infheing factors (RIF’s) under Arctic conditions.

4.1 Step 1: ldentify the peculiar risk influencing facs (RIFs) in the Arctic
region

The purpose of this step is to study and invettitfae effect of the predominant RIF’s, which are
induced by the unique Arctic operating environmemt,the drilling waste handling operations. Further
the interaction of the RIF’s, the dependabilityttdse factors on various variables, their negatyweergy
effect on the drilling waste handling systems ndeds assessed and specified [21, 25, 26].
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Figure 2. Proposed Bayesian network based rislssisemt model (BN-B-RM) for Arctic drilling waste
handling operations.

4.2 Step 2: Define the drilling waste handling system

In this step, suitable waste handling system shdnd defined, by considering the operating
environment of the Arctic region. In general, thestnhcommon drilling waste handling systems in the
Arctic region arei) offshore discharge (i.e. treating and dischargiegdrilling wastes to the ocean (sea)),
i) offshore re-injection (i.e. re-injecting the drillj waste offshore both in a dedicated reinjectiefl w
and/or in a dry (dead) well), aiig) skip- and ship (i.e. hauling the drilling waste k&a shore for further
treatment and disposal) [4].

4.3 Step 3: Construct the static BN or Hybrid BN

The aim of this step is to build the static BN, @hhicomprisesonly discrete or continuous
variables, or hybrid BN, consist bbthdiscrete and continuous variables. When decidmthe structure
of the network, the key is to focus on the causitionships between the main variables [27].

4.4 Step 4: Discrete vs continuous variables

After specifying the BN or HBN structure, then tipgantification of the relationships between the
connected nodes (variables) is the next step.

Step 4.1: Discrete variables (node8)discrete variable (node) is one with a wellided finite set
of possible values, called states [28]. For ingargng (one of the RIF’s), taking zero for thesabce or
one for the presence, during the drilling wastedtiag operations, can be regarded as a discretablar
When a variable is discrete, then the CPT’s (camuil probability tables) needs to be assignedt Tha
means, for each particular discrete node, all pessiombinations of values of those parent nodeslsie
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to be observed; and such combination is cdlisthntiationof the parent [27]. In general, for a Boolean

network, a variable with parents requires a CPT wiffi* probabilities [27].

Step 4.2: Continuous variables (nodes) continuous node (variable) is one which caretak a
value between any other two values, such as negaihand sea temperature [28]. In this step, &@he
continuous node, the conditional probability datitions (CPD’s), needs to be defined. Table | fthises
some popular CPD’s which can be used to definectiniéinuous node. Sometimes you want to treat a
continuous variable as a discrete variable. In siitfations, it is possible to break up the to#adge of
the continuous variable into a number of intervaley commonly this process is knowndiscretizing
the variable [28].

Table |. Example of CPD’s, adopted from Murphy [29]

Child/Parent Discrete Continuous
Discrete Tabular, noisy-OR, decision tree Prdbgistic, softmax
Continuous Conditional Gaussian Linear Gaussian

4.5 Step 5: Select prior probability function (distriban) for the selected system
or component

Once the drilling waste handling system or compoigedefined, then arior probability function
or distribution needs to be asserted. This functiothe representation of the failure rate of theste
handling system or component; and failure ratehé measure of frequency of system or component
failure. Theprior function describes the probability nfor fewer failures during a time interval of (),
when all RIF's are equal to zero or absent (i@ormal” operating environment), during waste hamgll
operations. For instance, by assuming that the oaews fail according to a Poisson process, the
probability ofn or fewer failures, can be estimated by the follgpvequation [30]:

PW) =Y %exp(—/lt) (3)
i=0 -
where:
= P (W)is the probability ofn or fewer failures, andl is a failure rate of the waste handling
component.

4.6 Step 6: Construct the likelihood function, based the system or component
failure rate data

After defining theprior probability function and observing the RIF’s datiagn the likelihood
function, has to be constructed. Likelihood funetgenerally is the joint probability function (JP&)d it
can be expressed as a product of conditional pilitiesb[31]. Hence, by considerindiscretetime-
independent and time-dependent RIF’s, the likelihfumction of the system failure, based on Glickman
and van Dyk [31] approach, can be expressed asifsil

LW | 2 2(t)) = (2,2, Z,(t),-..Z,, (t) [W) (4)

where:
* Z7,...Z is a set ofime-independent RIF’s, and
» 7(t),..z,(t) is a set of time-dependent RIF’s.
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Then, by grouping the RIF’s into vectors of sikeM, Equation (4), can be re-written as follows:

LW | z,z(t)):ﬁl Pz 2, ()W) 5)

where:
= nis avector of siz&+M.

By following the same approach, the likelihood fiioic of the health, safety, and environmental dak
be estimated. Taking the environmental risk asxam@le and by considering thliscreterisk variables,
likelihood function of the environmental risk cam &xpressed as:

L(E |W) = |‘l (W, | E) (6)

where:
= E is representing the environmental risks, as altre$ the waste handling system failure. The
same approach can be applied to determine thehteradt safety risks.

4.7 Step 7: Probabilistic inference/ computing the psdr distribution of
variables

Probabilistic inference is the task of computihg probability of each node in BN, according to the
most recent RIF’s to provide posterior probabiitid he posterior distribution combines prior RIF's
information with actual observed data from weatfugecasting to predict the future potential hazards
and/or risks. That means the current informatiooualthe RIF’s will be used to continuously upddte t
potential hazards relating to the health, safetyl environment. Simply, the distribution describbes
probability that the waste handling system willl,fajiven the predominant RIF's has observed. The
posterior distribution of the system or componeiiitife, consideringliscreteRIF’s (variables), based on
Glickman and van Dyk [31] approach, can be exprease

PW)PW | 7 z(t)) (7)

P(W | z z(t)) = J' pW) p(zz(t)|W)d,

By substituting the likelihood function and applyiBayes’ theorem, Equation (7) can be re-
written as:

PWILW] z z(t))
Rz z(t))

PWIzz(t)) = OPWILW |z z(t) (8

To solve, Equation (7) and (8), we can first mijtifhe prior distribution by the likelihood, and
then determine the marginal constant that forceexpression to integrate to 1 [31].

As we did above, by following the same approach@msidering theliscreterisk variables, the
posterior probabilities of the environmental risithde expressed as:

P(E)P(E W)

P(E |W) = 9)
[ p(E)pW | E)d,
Afterwards, by employing the likelihood functiongiation (9) can be re-written as:
p(E |w) = PELEIW) (10)

P(W)



PSAM P ABRISCO

} brisco Topical Meeting Congresso 2015

Sometimes, it is demanding and cumbersome to ¢dfi@are rate data in the Arctic. Such kind
of situations can hinder selecting the prior pralitads and constructing the likelihood functionhds,
the other option, in the case of data shortage, isake use of inference algorithms.

5. AN ILLUSTRATIVE CASE STUDY

To illustrate the proposed model, a shale shakbéich is one of the key components of the
offshore discharge waste handling system, is chtisestimate its conditional probability of failudeie
to the predominant Arctic RIF's and predict the hability of the environmental risks, in the case of
failure of the shale shaker. In general, offshaselthrge is a series of pre-treatment of drillilgdf and
cutting, and finally disposing the waste into tlea $ocean). As part of these treatment processluide
and suspended cuttings are processed on the oggthnrscreens called “shale shakers” to maximize
recovery of the mud [32]. The failure of the shsih@ker may then lead to stoppage of the overaitisys
and waste handling process. Hence, to estimatprtimbilities of the potential risks of the failuvkthe
shale shaker, the proposed approach is implemented.

Simply, our main objective (inquiry) is to detemai the unconditional probability of the
environmental risk. The main assumptions duringregton of probabilities are: a year-round openadio
window and there is no winterization or enclosufethe waste handling components to protect the
vulnerable areas, and the system is installeddrdthling rig, which operates in the Barents Seathern
Norway. The system failures due to other factarshsas failures due to maintenance error, desifgtte
and operating procedures are ignored.

The first step is to investigate and identify the predominBiF’s in the Barents Sea. The
recognized RIFs are sorted in monthly order (r@nfJanuary to December) and a sample of the data i
shown in Table Il. These RIFs (except the tempesatwere scored zero or one, for the absence or
presence during drilling waste handling activiti€ee minimum temperature (°C) data of the studyewer
collected over a period of 10 years (from 2005 14)0on the monthly basis, from Norwegian
Meteorological Institute database. The temperataresobserved in the Hopen Island weather station,
located at 76°33'N and 25°7°'E, northern Norway.urég4 shows the monthly minimum temperature
profile.

Table Il. The predominant risk influencing fact@iRIF’s) in the Barents Sea

Alir Snowstorm, Wind-chill Icing Icicles , Visibility

Month temperature - reducing Polar
C), Z; Z effect,Zs  Seasprayzun  AtmosphericZss Zs factors . lows Z;
January -14.2 1 1 1 1 1 1 1
February -11.2 1 1 1 1 1 1 1
March -14.6 1 1 1 1 0 1 1
April -12.4 1 1 1 1 0 1 1
May 3.0 1 1 1 1 0 0 1
Jung 0.C 1 1 1 1 0 0 0
July 2.2 0 1 0 0 0 0 0
August 2.7 0 1 0 0 0 0 0
Septembe 1.t 1 1 0 0 0 0 0
October -2.6 1 1 1 1 0 1 1
November -7.0 1 1 1 1 1 1 1

December -10.1 1 1 1 1 1 1 1
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Figure 4. The monthly minimum temperature profile

Thesecondstep is to define the drilling waste handling egstor component. As discussed above,
the probability of failure of the shale shakersemérctic environment will be analysed. In practitieere
are two series of shale shakers — primary and secgninstalled in the rig. The primary shakers use
coarse screens to remove only the larger drillitgirgs; and secondary shakers use fine mesh scteen
remove much smaller particles [33]. For simplifioat only primary shakers are considered in ouecas
study.

W i - egative sed Wiind-chill Sea spray Atmospheric isibility reducing
egative air termperature effect icing Ieing factors FPolar lows
termperature
Shale shaker
Heawy metal Hydnjcarbun Untreated mud arine ecosystem I:'Urmatiun Ufl
spill discharge =pill damage dead zones

Figure 5. The original HBN fragment

The third step is to construct the BN structure. Figureldsitates the original HBN fragment
considering the predominant RIF’s, the waste hagditomponent (i.e. the shale shaker), and the
potential environmental risks — when the shale shakased to function. To simplify estimation of th
probabilities, the original HBN is abridged and whoin Figure 6. Atmospheric icing, as a discreté Rl
and air temperature, as a continuous RIF, are deresd in the abridged HBN. In addition, marine
ecosystem damage is considered as one of the mdano@mental risks, and is included in the HBN
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Figure 6. A hybrid Bayesian network

Thefourth step is to define the state of the nodes (var®tded assign the CPT'$he discrete
node, which is atmospheric icing,}, is a Boolean node, representing trlipdr false Q) alternatives.
Simply, true/ false means presence/absence oftthespheric icing, during that specific observation
period. Since the atmospheric iciriy)(and air temperatur&{) areroot nodeqi.e. node without parents)
marginal probabilities need to be assigned. Taredé the marginal probabilities &f for each month, a
direct elicitation technique [27] is considered,emdnan expert provides a number, such as the ghitpab
of observingZ, in the month of January is 0.90. In addition, $implification, thecontinuousnode,
which is air temperatureZ(), is discretizedandtake the valuesLpw (0 to -10°C), Very Low (<-10°C),
and Medium % 0.1 °C]. Then, to determine the probabilities that Hyevill be low, P(Z,=L), very low,
P(Z;=VL) and medium,P(Z;=M), the raw temperature data are used as an inpoitanMATLAB
probability estimation command. Afterwards, margp@babilities tables (MPT) are assigned.

Further, the othadiscretenodes — the shale shak&)(and marine ecosystem damagg @re also
considered as a Boolean node, representing twesstBhe shale shaker states are failgd( not failed
(F); and for marine ecosystem damage, not accep{@pler acceptableH). Thereafter, a CPT has been
assigned using a direct elicitation technique. Tinatns the CPT takes the following possible joint
values, for each month:

(RW=T|Z =T,Z,=L)),(RW=T|Z =T,Z,=VL)),

(RW=T|Z =T,Z,=M)),(RW=T|Z =FZ,=L)), (1)
(RW=T|Z =F,z,=VL),(RW=T|Z =F,Z,=M)),
(RE=T|W=T)

For instanceP(W =T |Z, =T,Z, = L) describes the probability that the shale shakerfaill

given icing condition and low temperature. The M CPT results are presented in Table Ill.
To proceed with step 5 and 6, failure rate datal nede available. However, in the Arctic region,

there is a shortage of valid failure rate data [13]. Hence, in the case of shortage of data, thero
option is to make use of inference algorithms. Aentioned above, our inquiry is to get thesterior

probability of environmental risk® (E), i.e. the probability of environmental risk beingt acceptable
Then, to determiné?(E) the followinginference algorithntan be used:

P(E)= > PEMWPWI|Z,Z,)AZ)PZ,) (12)

a.4W

Table Ill. MPT for icing & air temperature and CR¥ system failure and marine ecosystem damage

Month Jan. Feb. Mar Apr. May Jun. Jul. Aug. Sep. @t. Nov. Dec.
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Marginal probabilities

P(Z=T) 090 | 090 090 080 080 050 001 001 001 0.85950 0.95
P(Z=F) 0.10 010 010 020 020 050 099 099 099 0.15050 0.05
P(z=L) 080 090 040 080 080 010 010 0.10 0.10 0.8 850. 0.90
P(Z=VL) 020 010 060 020 020 0.00 0.00 0.00 0.00 0.00150 0.10
P(Z=M) 000 000 000 000 000 090 090 090 0.90 0.20000 0.00

Conditional probabilities

P(W=T|Z=T, Z;=L) 085 085 060 065 065 035 005 005 005 0.70800 0.85
P(W=F|Z=T, Z;=L) 015 0415 040 035 035 065 095 095 095 0.30200 0.15

P(W=T|Z=T, Z;=VL) 055 040 08 050 050 025 005 005 0.05 050300 0.30
P(W=F|Z=T, Z;=VL) 045 060 015 050 050 075 095 095 095 050700 0.70
P(W=T|Z=T, Z,=M) 040 040 040 035 035 030 001 0.01 0.01 0.35400 0.0
P(W=F|Z=T, Z;=M) 060 060 060 065 065 070 099 099 099 0.65600 0.60
P(W=T|Z=F, Z,=L) 035 040 015 030 030 005 005 0.05 0.05 0.15300 0.30
P(W=F|Z;=F, Z,=L) 065 060 08 070 070 09 095 095 095 0.85700 0.70
P(W=T|Z=F, Z,=VL) 0.15 005 040 020 020 000 0.00 0.00 0.00 0.00150 0.10
P(W=F|Z=F, Z,=VL) 08 095 060 080 08 100 100 100 1.00 1.00850 0.90
P(W=T|Z=F, Z;=M) 005 005 005 005 005 001 001 001 0.01 0.10050 0.05
P(W=F|Z;=F, Z,=M) 095 095 09 095 09 099 099 099 099 0.90950 0.95
P(E=T|W=T) 047 043 049 041 041 019 003 0.03 0.03 0.36400 0.40
P(E=F|W=T) 053 057 051 059 059 081 097 097 097 0.64600 0.60

Table IV presents the estimatpdsteriorprobability of environmental risk, for each monitne
maximum environmental risk, i.e. the worst marim®system damage can be anticipated during the
month of January to March witi(E) equals to 0.35. That means during these mortitasprobability of
system (shale shaker) failure will be higher due¢ht® high probability of icing formation and lowdn
very low temperature conditions. Thus, the systaiture consequently leads to higher environmental
risks. Figure 7 further illustrates the posteriavieonmental risks (marine ecosystem damage) foh ea
operating months. For instand®(E), for the month of January, can be calculatedoievis (note that
the MP and CP can be read from Table Ill):

RE)=PE=T|W=T)* PW=T|Z,=T,Z =) * P(Z, =T) * PZ, = L) (13)
P,(E) = 047 *085 *080 * 090 = 029 (14)

Table IV. Posterior environmental risk probabiltie

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
= Pi(E) 0.29 0.30 0.11 0.17 0.17 0.00 0.00 0.00 0.00 0.126 00.29
IS P,(E) 0.05 0.02 0.22 0.03 0.03 0.00 0.00 0.00 0.00 0.0m2 00.01
é g P3(E) 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.0D000.00
e P4(E) 0.01 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.0D100.01
-

Ps(E) 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.0W000.00
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Ps(E) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0W000.00
P(E)=% P(E) 0.35 0.34 0.350.23 023 0.03 0.00 0.00 0.00 020 0.28 0.31

0.35

0.3 =

0 | | | | | | | | |
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Month

Figure 7.P(E) vs Operating months

6. CONCLUDING REMARKS

The sensitive environment, the remoteness, andlehganding physical conditions of the Arctic
create special challenges for drilling waste hamdhctivities. Further, drilling waste treatmentilities
are not readily available in the region. In theeaitze of drilling waste treatment and disposal iéesl in
this fragile ecosystem, a major concern could ke dksurance of the fulfilment of health, safety,
environment, and quality (HSEQ) requirements. Tduoe the overall environmental footprint and ensure
the rigorous HSEQ requirements in the Arctic, ptitinitiating drilling operations, attention shdube
paid to prediction of probabilities of the poteht#SE risks, and consequences of waste handlingrsys
failures.

The proposed Bayesian network based risk assessmel (BN-B-RM) can help the user to
investigate the probability of HSE risks as well stem failure, by considering the peculiar risk
influencing factors which are caused by the opegatinvironment of the Arctic region. The step-bgpst
approach is outlined, to facilitate the predictafrthe HSE risks. By employing the proposed BN-B-RM
approach, the risk barriers and mitigation meascagsbe allocated based on the level of estimagéd r
The illustrative case study shows that the pec@iatic risk influencing factors has significant fiact,
especially during winter period, in the overallkripicture, in the course of drilling waste handling
practices in the region.
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