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1. INTRODUCTION 
 

 Occupational accidents pose several negative consequences to employees, employers, environment 

and people surrounding the local where the accident takes place [1]. Therefore, it is imperative to develop 

adequate safety policies and operational procedures that minimize the probability of occurrence of 

occupational accidents. To do that, it is required to predict measures such as the expected work time loss. 

 As in failures analysis this process consists of two main steps: (i) inference of reliability quantities 

that explain the stochastic mechanism that originate the accident/recovery process such as accidents and 

recovery rates and (ii) characterization of accidental behavior by applying stochastic process analysis 

methods (e.g. Markov process). 

 A lot of research has been done on the quantitative analysis of occupational accident data. This 

includes modeling of occupational accident frequency [1 – 3] and work time losses [1, 4]. Several authors 

have used descriptive statistics and factor analysis, as Babu & Nayak [5]. From the 90’s, Bayesian 

inference methods have long been used for the analysis of accident databases [6] to model uncertainties 

and enable future predictions but very few studies deal with prediction of work time loss [1].  

 For Meel et al. [3], the use of advanced Bayesian prediction methods is more suitable due to the 

scarcity and censorship of accident data. Meel & Seider [7] and Meel et al. [3] developed a Bayesian 

approach for the assessment of accident frequency in petrochemical industries in Europe. Marcoulaki et al. 

[1] extended the Meel’s model by including analysis on work time loss and unavailable due occupational 

accidents. 

 Marcoulaki et al. [1] assumed that all workers have the same accident and recovery rates. Thus, the 

authors used data from all workers together and treated them as homogenous in order to formulate the 

likelihood function of the Bayesian model. However, due to the existence of subjective and individual 

characteristics it is expected that a same class of employees have a unique accident and recovery rates 

even though they have similar functions in the workplace or are allocated in the same occupational 

environment as other employees. Therefore, a population variability assessment over the rates is more 

appropriate for accidents analysis.  

 

 

2. OBJETIVOS DO TRABALHO 
 

 Thus, this paper proposes a Bayesian population variability analysis-based method for this problem. 

Bayesian population variability analysis is an estimation procedure for the assessment of the variability of 

reliability measures among a group of similar systems/employees. Moreover, a Markov-based model is 

proposed for investigating future trends regarding occupational accidents in the workplace as well as 

enabling a better management of the labor force from the results of the population variability analysis. In 

fact, the key performance indicators here estimated by the Bayesian models will be the expected 

unavailability of the labor force and, consequently, the expected recovery time from an accident which 



   

   

will be computed by a Markov-based model. Thus, the Markov based model will work as a simulation 

algorithm to generate the accident and recovery times for the workers. To do that the numerical method 

proposed by Moura & Droguett [8] will be used because it is efficient to estimate the expected 

unavailability curve and associated uncertainty. 

 The remainder of this paper is organized as follows. Section 3 presents the theoretical background 

about the Bayesian Population Variability Analysis. Section 4 presents the proposed model, while Section 

5 discusses the numerical results using evidence from a real accident database of a hydroelectric power 

company in Brazil. Finally, section 6 presents concluding remarks. 

 

3. THEORETICAL BACKGROUND 
 

3.1 Bayesian population variability assessment for accident analysis. 
 

The failure and repair rates of a system are often used to characterize our expectations regarding 

the system’s ability to perform its intended function. Likewise, we can use these measures to represent 

our prospects about the workers safety making the accident an expression of our personal uncertainty 

about the workers accidental behavior [9]. Thus, let ρ be a random variable that defines the accident or 

recovery rate of an employee and ���� � ��|��, … , ��� denote the parametric variability distribution 

model. Then, a probability distribution ����, … , ��� over the parameters ��, … , �� of the model can be 

used to describe the uncertainty about the population variability distribution. The estimated population 

variability density is taken as 

 

 
̂��� � �…� ���|��, … , ���. ����, … , ���. ���…�����,…,��      (1) 

 

Therefore, the estimated density function consists of a weighted mix of distributions of the 

chosen model. This is opposed to estimation methods as the Maximum Likelihood Estimators 

which is based in a single ‘best' distribution chosen from the set of distributions. 

 The Bayesian population variability analysis of ρ assumes that the distribution π(θ1,…,θr) 

is uncertain and a Bayesian method is applied to infer it. For this, in addition to the collected 

accident data is necessary to have prior information about the population variability. Let E0 be 

prior evidence that provides information about the π distribution, i.e. E0 is the prior knowledge 

over π without considering data recorded (e.g. the expert’s estimates about the probability 

distributions of (θ1,…,θr). Then, π0(θ1,…,θr) = π(θ1,…,θr│E0) is the prior probability distribution 

of the population variability distribution parameters (θ1,…,θr) and 
̂ 0(ρ│E0) = ∫…∫θ1,…,θr 

φ(ρ│θ1,…,θr) × π0(θ1,…,θr).dθ1…dθr is the prior population variability distribution of ρ. 

 Let the evidence E1 include the information about the accidents database i.e. the 

information obtained from accidents records. Then, the employees’ population distribution over 

ρ, conditional on E0 and E1 is given by 
 

 
̂���|��, ��� � ������, ���.� ������.�����.�� 
� ������, ���.�!.� ������.�����.�� "

      (2) 

 

where �={θ1,…,θr} and P(E1│ρ, E0) is the likelihood of the evidence E1. The posterior distribution of the 

population variability parameters based on information types E0 and E1 is developed by applying the 

Bayes’ theorem: 
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 (3) 

 

Therefore, it’s possible to evaluate the posterior population variability distribution of the accident or 

recovery rate by making 
̂1(ρ│E0, E1) = ∫� φ(ρ│�) × π1(�│E0,E1).d� [10, 11]. 

Assuming that the accidents occurring in each employee are independent, the likelihood function of 

the exposure data becomes 

 

 #�����, ��� � ∏ #���%��, ���&%'�         (4) 

 

where P(E1i│�,E0) is the probability of observing evidence E1i for the i-th out of n employees. Note that 

the accident measure for the i-th worker, ρi, is not known exactly and therefore P(E1i│�,E0) is given as a 

function of ρi (P(E1i│�,E0, ρi)). We know that ρi is one of possibly many values of variable ρ. Moreover, 

according to our model, ρ is distributed according to φ(ρ│�), and � is also unknown. Therefore, we 

calculate the probability of observing the information E1i by allowing the accident measure to assume all 

possible values i.e. by averaging P(E1i│�,E0, ρ) over the distribution of ρ: 

 

 #���%��, ��� � � #���%��, ��, ��. ������. ��!       (5) 

 

4. A POPULATION VARIABILITY AND MARKOV BASED INTEGRATED MODEL 
 

4.1 The timeline of the worker. 
 

The assessment of the likelihood function (Eq. 4) is mainly based on the exposure data i.e. the 

number of accidents or recoveries by the operational time of a worker (runtime data). In general, the 

employment time is not necessarily the same for all workers. Therefore, only knowing the number of 

accidents suffered in an observation period is not sufficient. The observation of the timeline for each 

worker allows obtaining exposure data [1]. Then, consider that any occupational accident is reported and 

recorded. Typically, the registration and reporting forms of occupational accidents contains the accident 

date and the duration of the recovery period following the accident. This information, in addition the 

admission and dismissal dates, sets the timeline for each work as illustrated in Figure 1. 

Figure 1 shows the timeline for a workplace with 12 workers during a period of observation 

starting at time TS and terminating at TF, where TSi ≥ TS and TFi ≤ TF are, respectively, the starting and 

finishing times of i-th worker. If TSi > TS then the worker was admitted after the initial observation period 

and, similarly, if TFi < TF then the worker was fired before the final observation period. In the interval [TSi; 

TFi] the worker is involved in Ki accidents. The working time of worker n between kn-1 and kn (kn = 1, 

2, …,Kn) is denoted by (&,)* .The respective recovery time is denoted by +&,)* . The time range between 

the recovery from the last accident, Kn, and TFn is denoted by sn. 

The staring times TS1, TS2, TS3, TS6, TS7, TS9, TS10 and TS11 coincide with TS; this means these workers 

were hired before or at TS. The finishing times TF1, TF2, TF3, TF4, TF5, TF7, TF10 and TF11 coincide with TF i.e. 

the workers 1, 2, 3, 4, 5, 7, 10 and 11 remained working after TF. Only workers 1, 2, 3, 7, 10 and 11 are 

employed over the whole exposure time, while the others work only for a fraction of this time. Workers 3, 

5, 8 and 11 have no accidents, so s3 = TF3 – TS3, s5 = TF5 – TS5, s8 = TF8 – TS8 and s11 = TF11 – TS11. The 

contract of worker 9 expires when he recovers from his last accident, thus s9 = 0 (it is noteworthy that 

some regulations protect workers from this type of situations, giving him a labor warranty for a specified 

period after the recovery from an accident. However, this example is useful for illustration). Ultimately, 



   

   

the finish time (TF) occurs before the worker 10 back to work, therefore the recovery time r10,1 is said to 

be censored and there is no s10. 

 

 
Figure 1 – Timelines for a workplace with 12 workers. 

Source: Adapted from Marcoulaki et al (2012). 

 

Note that Tn = (∑ (&,-.)*%'� ) + sn = TFn – TSn – Rn (where Rn = ∑ +&,-.)*%'� ) represents the total time for 

which the worker n was submitted to the risks of occupational accidents. Thus, we can determine the 

exposure data of each work by the pair (Kn, Tn). Similarly we can determine the exposure data for the 

recovery data by the pair (KRn, Rn), where KRn is the number of recoveries of the worker n. Thus, it is 

possible to use the censored data found in the database available. Table 1 illustrates the exposure data 

extracted from in Figure 1. The information in Table 1 provides a clear view of the E1 evidence needed 

for the likelihood function construction in the population variability model (E1λ corresponds to E1 type 

evidence for the accidents rate analysis and E1μ corresponds to E1 type evidence for the recovery rate 

analysis). 

Table 1 – Exposure data (E1 evidence) for Figure 1 example. 

Worker ��/  ��0 



   

   

(i) 1% 2%   13%  4% 
1 1 (�,� 5 6�  1 +�,� 

2 2 (7,� 5 (7,7 5 67  2 +7,� 5 +7,7 

3 0 68  - - 

4 1 (9,� 5 69  1 +9,� 

5 0 6:  - - 

6 1 (;,� 5 6;  1 +;,� 

7 3 (<,� 5 (<,7 5 (<,8 5 6<  3 +<,� 5 +<,7 5 +<,8 

8 0 6=  - - 

9 1 (>,�  1 +>,� 

10 1 (��,�  0 +��,� 

11 0 6��  - - 

12 2 (�7,� 5 (�7,7 5 6�7  2 +�7,� 5 +�7,7 

 

4.2 The population variability analysis construction 
 

4.2.1 Mixed likelihood model 
In order to perform a population variability analysis of accident or recovery rate we need to specify 

an appropriate probability distribution to describe the underlying variability of the measure of interest, 

φ(ρ│�), as well as construct the likelihood function P(E1│�,E0). The specification of the probability 

distribution describing the variability may be guided by the nature of the accident measure. According to 

Droguett et al [12], the use of the Gamma or Lognormal distribution is suitable for representing the 

variability in the number of failure of the various systems with different failure rates. Thus, let us consider 

the population variability of the accident measure is given by a lognormal distribution i.e. 

  

 ���|?, @� � �
√7�!B CD

�
EFG*"HIJ KE        (6) 

 

where v and τ are the parameters (mean and standard deviation). The Lognormal distribution can be 

written in terms of median (ρ50) and error factor (EFρ) of the distribution by making the following 

changes: ρ50 = ev and EFρ = e1.645τ, as illustrated in Equation (7). The posterior of the variability 

distribution parameters in Equation (3) can be written as Equation (8). 
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The likelihood construction is an evidence-driven process i.e. it is dependent on the type of the 

available evidence E1. In the analysis of accidents is difficult to obtain expert estimates on the accidents 

rate of each worker individually. In general, the exposure data (as in Table 1) are the only available 

evidences. Moreover, due to non-homogeneity among workers (as discussed in Section 3), it is not 

representative to obtain such estimates directly from the accidents databases.  

In this way, the likelihood can be constructed. If we know the accident rate λi = λ or the recovery 

rate μi = μ of each employee (ρ represents both rates), we can use the Poisson distribution to estimate the 

likelihood of observing qi events (Ki accidents or KRi recoveries) in the time wi (Ti or Ri): 
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As we only know that ρ is one of the possible values of the rate represented by its population 

variability distribution φ(ρ│ρ50,EFρ), we average the likelihood given by Equation (5) over all possible 

values of ρ in order to calculate the probability of the data unconditional on the unknown value of ρ: 

 

#�X% , Y%��:�, �L!, ��� � #% � � #�X%|Y% , �, ���. �����:�, �L!�. ��!     (10) 

 

Replacing Equations (7) and (9) into Equation (10): 
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The total likelihood is then obtained by replacing Equation (11) into Equation (4). 

 

#�����, ��� � ∏ � �!.Z.�[. .\H".].
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4.2.2 A prior distribution specification 
Application of population variability analysis re-quires specifying the prior distribution defined 

over the parameter space of the chosen variability model, representing the prior belief about the 

variability distribution before the evidence (accident database) be-comes available. Some authors propose 

that the prior be specified in the form of a discrete prior distribution [10, 13]. 

The algorithm here adopted involves the specification of an informed continuous prior over the 

parameter space of the variability model. The analyst is required to provide initial estimates in terms of a 

central value (median) and the extent of variability (error factor) in the population variability distribution. 

As discussed in Droguett et al [12], these estimates take the form of Lognormal distributions. If the 

parameters v and τ of the population variability distribution of ρ are distributed as a Lognormal 

distribution, then the distributions of ρ50 = ev and EFρ = e1.645τ take the forms: 

 

a��:�� � �
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where γx and εx are the median and error factor of the distribution of x (where x can represents both 

the median and error factor of ρ). Considering the independence between v and τ then the prior 

distribution of variability model is π0(ρ50, EFρ) = f (ρ50) × f (EFρ). The definition of prior distributions 

consists in to determine the values γρ50, ερ50, γEFρ and εEFρ (e.g. by specialist’s opinions): 

 

����:�, �L!� � a��:��f!Q� , g!Q��. a F�L!UfVW" , gVW"K      (15) 

 

So the set {γλ50, ελ50, γEFλ, εEFλ} corresponds to the E0 evidence for accident rate analysis and the set 

{γµ50, εµ50, γEFµ, εEFµ} is the E0 evidence for recovery rate analysis. 

 



   

   

4.2.3 Variability Measures 
The likelihood functions and prior distributions have been incorporated in a Bayesian inference 

procedure in which the posterior density π1(�│E) is computed. The Bayesian inference is performed by 

using a Markov Chain Monte Carlo Method (MCMC), which allows samples to be generated from a 

continuous unnormalized density [14]. The MCMC method, which is frequently applied to Bayesian 

Inference problems [15], results in a m-samples set S = {�1,…,	�m}, representing the posterior density 

over the parameters of the variability distribution model φ(ρ│�). Given S, the estimated population 

variability density is computed as 

 


̂��� � �
i∑ �����%�i%'�          (16) 

 

The corresponding mean and variance are computed as 

 

ĵ! � �
i∑ j�i%'� �%�          (17) 

 

kl!7 � �
i∑ k7�i%'� �%�         (18) 

 

where μ(�) and σ²(�) are the mean and variance of φ(ρ│�). 

Furthermore, the generated results include uncertainty bounds of the cumulative variability density 

P(ρ) = � 
�m��m!
n'�  in the form of zth percentiles Pz(ρ), defined as Pr(P(ρ) < Pz) = z/100. The zth 

percentiles are determined by finding the value #op(ρ) for which for a fraction z/100 of the samples �% ∈ S: 

 

� ��m��%�!
n'� . �m r #op���         (19) 

 

These bounds provide the analyst with a basis to assess the uncertainty associated with the 

estimated population variability distribution related to accidents or recovery rates. 

 

4.3 Estimation of the Work Time Loss Distribution by Markov-based model 
 

As discussed in Section 3 it is assumed that each employee has a unique accident rate even that 

they have functions similar or be allocated in the same occupational environment as the other employees. 

This assumption is due to the existence of idiosyncrasies that make every worker particular. 

The random behavior, which leads to occupational accidents, and the corresponding recovery of the 

worker, can be represented by a Markov-based stochastic process as shown in Figure 2. Workers who are 

in the first state are performing their function normally (they are available for work), while those in the 

second state are recovering from an accident (on medical leave). Random mechanisms, which lead the 

worker i to an accident, occur with rate λi, so that if the worker was available (State 1) he becomes 

unavailable (state 2). Another random mechanism recovers the victim to the available status with rate μi. 

It is assumed that the two rates, λi and μi, are independent. 

If we know the accident rate λi and the recovery rate μi we can determine the unavailability curve of 

the worker by applying some method of solution of the Markov diagram (numerical methods, analytical 

treatment, simulation, etc.). However, we only know that λi and μi are one of possibly many values of the 

variables λ and μ, distributed as p(λ) and p(μ) respectively. p(λ) and  p(μ) are estimated by 
̂1(λ│E0λ,E1λ) 

and 
̂1(μ│E0μ,E1μ) from the Bayesian model presented in Section 4.2. 

 



   

   

 
Figure 2 – Markov diagram of the stochastic process. 

 

Of course, if workers have different accident and recovery rates, they have different unavailability 

curves. We can simulate the stochastic process linked to accidental behavior of a worker by generating 

the values λi and μi from 
̂1(λ│E0λ,E1λ) and 
̂1(μ│E0μ,E1μ). By doing this, we obtain the unavailability 

curve by solving the Markov process. However, we can’t determine the worker for which this result is 

valid. Repeating this process N times (N must be large enough to ensure the representativeness of the 

simulation), we obtain an N-samples set where each sample contains one curve of unavailability. Thus, 

we estimate the average unavailable curve (st(t)) as 

 

st�(� � �
u∑ s%�(�u%'�          (20) 

 

where Ui(t) corresponds to the curve of the unavailability resulting from the i-th iteration of Markov 

process. 

It is acceptable to assume that st(t) represents the fraction of man-hour loss due to occupational 

accidents. Also, it is possible to define the uncertainty associated with this estimate by the zth percentiles 

of the set {Ui(t), …, UN(t)}. 

In this paper, we use the numerical treatment based on transition frequency densities by Moura & 

Dorguett [8] to infer unavailability curves. The Population Variability and Markov-based integrated 

model can then be resumed by Figure 3. 

 

 
Figure 3 – Proposed Model. 

 

 

5. EXAMPLE APLICATION 
 

 In this section, we illustrate and discuss the use of the Bayesian Population Variability analysis and 

Markov-based models by means of an example. We start by supposing that we are interested in assessing 



   

   

the average distribution of work time loss due to occupational accidents for workers of a hydroelectric 

power company in Brazil. Runtime data were collected from the timeline of operation employees between 

01/01/2005 and 09/31/2012 in order to construct the likelihood function. 

As discussed in Section 3.1 the Bayesian Population Variability Analysis must be used in a workers 

population subject to similar risk of accidents. So, in this section, the model is applied to employees with 

the same job and workplace. The administrators located in the operation sector of the company were 

analyzed. These workers suffered mainly two types of accidents: (1) accidents in commuting and (2) falls. 

It is expected that one worker has different accident and recovery rates for each type of accident. 

Therefore, the model was applied separately for analyzing the work time loss distributions due to 

accidents in commuting and falls. 

 

5.1 Results 
 

57 workers were analyzed in a total of 157,784 men-days of work. 27 accidents were recorded in 

the period, of which 13 are accidents in commuting and 14 are falls. Upon solving the Bayesian 

population variability and Markov-based integrated model, the expected unavailability of the population 

of workers has a 5th and 95th percentiles of 0.00017 and 0.0043 due accidents in commuting an of 0.00025 

and 0.008 due falls, respectively, with a mean of 0.0013 for accidents in commuting and of 0.0022 for 

falls. 

If TL(t), TL
5%(t) and TL

95%(t) correspond to the mean and the 5th and 95th percentiles distributions of 

expected work time lost by one worker of population then the mean and the 5th and 95th percentiles 

distributions of expected work time lost in the population of workers (TP(t), TP
5%(t) and TP

95%(t)) can be 

obtained by multiplying the TL(t), TL
5%(t) and TL

95%(t) by the number of workers in population. This 

means that the expected work time loss by workers located in the operation sector in one year is 0.46 × 57 

= 26.35 men-days due to accidents in commuting and 0.81 × 57 = 46.33 men-days due to falls, amounting 

72.68 men-days loss per year among the workers located in operation sector of the hydroelectric power 

company. The corresponding 5th and 95th percentiles are 0.063 × 57 = 3.60 and 1.58 × 57 = 90.10 for 

accidents in commuting and 0.09 × 57 = 5.10 and 2.9 × 57 = 165.81 for falls. Figure 4 and Figure 5 

illustrate the expected work time loss curves for accidents in commuting and for falls. 

 

5.1.1 Validation 
To validate the application of the model we generate the data from the results of the Bayesian 

population variability model in order to compare them with the actual data. The Bayesian model applied 

in the real case provides estimations for population variability distributions of accidents and recoveries 

rates. From these distributions we generate the accidents and recoveries data of workers. It is expected 

that these data can represent the accident-recovery process of this population of workers. 

 

 
Figure 4 – Work time loss distributions for accidents in commuting. 



   

   

 

 
Figure 5 – Work time loss distributions for falls. 

 

These data were compared with the actual data by application of the statistic Kruskal hypothesis 

test [16] under the null hypothesis that the data follow the same distribution. Three tests were realized for 

each type of accident: (i) test on time to accident, (ii) test on time to recovery and (iii) test on 

unavailability, amounting six (6) hypothesis tests. Table 2 shows the p-values of each test. 

All p-values are greater than 0.1, then we can say that there is no evidence to reject the null 

hypothesis. Furthermore, we can accept the null hypothesis to be true i.e. the simulated and actual data 

come from the same distribution since the p-values in Table are large. This result validates the proposed 

model in this paper because it proves the efficiency of the model to represent the real population. 

 

Table 1 – p-values of the hypothesis tests. 
Test accidents in commuting falls 

Time to accident 0.1871 0.125 

Time to recovery 0.2606 0.1755 

Unavailable 0.2606 0.1705 

 

 

6. CONCLUDING REMARKS 
 

 The model presented in this paper represents an extension of the Bayesian population variability 

assessment method in accidents analysis. A Markov-based model is used for estimation of the expected 

work time loss distributions due to occupational accidents. The Bayesian population variability 

assessment method allows the evaluating of population variability of accidents and recovery rates based 

on exposure data of workers submitted to same occupational risks and the Markov-based model is used to 

derive the worker unavailability statistics to predict the amount of time that workers will be recovering 

from accidents and therefore won’t be available to perform the job they are paid for. The use of the 

population variability analysis allows to assess the uncertainty presented on the results of the Markov-

based model. 

 The models developed here can be informed using available databases of occupational accidents 

documented in the industries. Sufficient statistics to use the models include only the number of workdays, 

the workdays loss due to recovering from occupational accidents, and the number of occupational 

accidents over the period of observation for each worker. 

 The implementation of the extension used in the examples in Section 5 has shown that the 

numerical solution of the models is feasible and provides a good estimation for the expected work time 

loss distribution due to occupational accidents. Also, the comparison of simulated data, from the 



   

   

population variability distributions, with real data showed that the estimated population variability 

distributions of the accidents and recoveries rates can be used to represent the actual situation.  
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