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Abstract  
 
Currently some components of complex safety systems may be subject to multiple testing 
levels.  That is the case of BOPs of which some key components may be subject to up to a 
four-level functional and integrity testing scheme, in addition to online diagnostics. Such 
multiple-testing-level (MTL) schemes impose additional requirements with their associated 
computational difficulties on the assessment of the SIS PFDs. In this paper we investigate 
possible solution methods for the calculation of PFD of safety systems subject to MTL, 
assess the differences in results of PFD obtained with various methods (analytical equations, 
FT, numerical and simulation) and analyze to which degree they give conservative or 
optimistic results. 
 
  
1. INTRODUCTION 
 
 It is well known among safety practitioners that the reliability of safety critical 
systems subject to low number of demands is strongly dependent on a rigorous testing 
scheme of such systems. The introduction of IEC-61508 [1] in 1998 introduced formal 
requirements for the performance of such tests for the so-called safety instrumented systems 
(SIS) and proposed several methods for the evaluation of the PFD (Probability of Failure on 
Demand) of SIS as a function of their testing schemes.  

Currently, most typical SIS found in industrial installations are subject to two levels of 
testing: online diagnostics and periodic tests. Online diagnostics conducted by fault detection 
systems are performed on a quasi-continuous basis and are capable of identifying an 
important fraction of otherwise hidden failures that could, if not duly identified, lead to 
dangerous failures of the safety system, i.e., its failure to perform the assigned safety function 
when demanded by a plant hazardous event. By its turn, periodic tests are typically manually 
performed at periodic times according to a pre-determined scheme. 

More recently the so-called partial stroke testing (PST) [2, 3] has been introduced to 
allow periodic testing of safety block valves to be done without interfering with the 
continuity of the plant operation. Nevertheless, such PSTs are inherently incomplete, in the 
sense that only a fraction of the valves failure modes can be tested without actually blocking 
the process flow. Therefore, there remains a need to perform “complete tests” on a periodic 
basis, but because of the PSTs, the period can then be extended while maintaining a low 
value for the SIS PFD. Therefore, the introduction of PST implies a third testing level for the 
SIS: the first is “online diagnostic”, the second is PST, and the third is the complete test. 

In many cases one cannot guarantee that the complete tests are really perfect, that is, that 
they are capable of detecting all failure modes such as rendering the SIS to a perfectly good 
state after the test (and repair, if some failure is detected by the test). In many cases, the 
complete test is imperfect, meaning that some residual failure remains undetected (hidden) 



   
   
even after the complete test. In these cases, the full failure detection will only be achieved 
upon occurrence of a true demand event. Therefore, in terms of PFD assessment, the 
consideration of test imperfection implies that during the period between true demands of the 
SIS there will be a residual hidden failure rate that will give a small contribution to the 
average PFD of the SIS. This introduces a fourth testing level, which is that of the true 
demand event. 

Some more complex safety systems may be subject to even more than the above levels of 
testing. That is the case of Blowout Preventers (BOPs) currently in operation in various parts 
of the world, of which some key components may be subject up to a five-level testing 
scheme, such as: 

1. Online diagnostics, 
2. Weekly testing, 
3. Bimonthly testing, 
4. Semi-annually testing, and 
5. Overall revision (typically at five-year periods). 
Such multiple-testing-level schemes impose additional requirements (with their 

associated computational difficulties) on the assessment of the SIS PFDs. They are addressed 
in this paper. 

The meanings of the abbreviations used in this paper are summarized in Table 1. 

Table 1 - Abbreviations 

Abbreviation Meaning 

BOP Blowout Preventer 
CCF Common-Cause Failure 

DC Diagnostic Coverage 

FT Fault Tree 

KooN K-out-of-N configuration 

MTL Multi ple Testing Levels 

MTTR Mean Time to Repair 

PFD Probability of Failure on Demand 

PST Partial Stroke Testing 

RBD Reliability Block Diagram 

SIL Safety Integrity Level 

SIS Safety Instrumented System 
 
 
2. OBJECTIVES OF THE WORK 
 
 In this paper we investigate possible solution methods for the calculation of PFD of 
safety systems subject to multiple testing levels (MTL), develop approximate analytical 
equations for the evaluation of the PFD of safety systems subject to MTL based on simplified 
RBDs, assess the differences in results of PFD values obtained with various methods 
(analytical equations, FT, numerical integration and Monte-Carlo simulation) and analyze to 
which degree they give conservative or optimistic results. It is shown that with proper 
modelling all methods give acceptable results, that is, within acceptable differences between 
them. We also introduce a discussion (without exhausting it in anyway) on the meaning of 
common-cause failures for safety systems subject to the conditions stated in this paper. 



   
   

 
Figure 1 - Failure rate splitting at each testing level 

 
3. EVALUATION OF THE PFD OF A SIS SUBJECT TO MULTIPLE TESTING 

LEVELS 
 
3.1 Basic Assumptions 
 
Three basic assumptions are used in this paper for the evaluation of the PFD of a SIS subject 
to MTL.  

First assumption: each testing level has a coverage factor that implies the detection of a 
certain fraction of the failure modes included in the total failure rate of a component (the 
coverage factor of the last testing level is always equal to one). Therefore, the total dangerous 
failure rate is decomposed in several failure rates as indicated in Figure 1. Each component 
can be thought as a series of subcomponents as indicated in the RBD of Figure 2. 

Second assumption: when a failure of a component is detected (by the online diagnostics 
system or by a periodic test), the operating system is immediately stopped and remains out of 
operation during the repair of the failed protection component. Therefore there is no 
contribution of the detected failure modes to the PFD of the protection system. Most systems 
are not operated this way, but this is generally true for drilling operations with BOPs. This 
assumption can be easily relaxed but the corresponding analytical expressions become too 
large. 

 Figure 2 - RBD representation of a component subject to four testing levels 



   
   

Third assumption: the higher order testing levels are multiple of the time between tests 
of the first test level. This is expected in practice as it minimizes the overall number of tests 
and of possible process interruptions for testing. This assumption is drawn uniquely for the 
development of the approximate analytical equations. 
 
3.2 Models for PFD Evaluation of Systems Subject to MTL 
 

The definition of the SIL levels in IEC 61508 [1] uses the average PFD of the system, 
which is the same as the average value of the instantaneous unavailability function over a 
certain test period. The instantaneous unavailability at time t, or the value of PFD(t), is by 
definition the probability that the system is unavailable at time t. As indicated by Apostolakis 
and Chu [4] a long time ago, the average unavailability of a periodically tested safety system 
is not really a probability. Therefore strictly speaking, the Theory of Probability does apply to 
instantaneous unavailabilities but not to average unavailabilities (In most cases, this “error” 
does not introduce very important differences in the numerical results). The latter used to be 
usually done in most PFD calculations, but this has started to change in recent years. 

As indicated in IEC 61508 [1] there are several methods that can be used to evaluate the 
PFD of a SIS. In this paper we work with the following methods: 

1. Numerical integration of time-dependent equations, PFD(t), obtained from SIS RBD 
modelling;  

2. Approximate analytical equations derived from SIS RBD modelling; 

3. Fault tree analysis and 

4. Monte Carlo simulation. 

 
3.3 Some Comments on the Above Methods 
 

The numerical method is not explicitly mentioned in the standards but it has been 
known from a long time, its first ever implementation having been that of the FRANTIC code 
[5]. It is based on the numerical integration and averaging of the time-dependent system 
PFD(t) which is obtained by the logic combination (probability rules) of the time-dependent 
unavailability functions of the components. 

The approximate analytical equations for protection systems subject to MTLs derived 
in this paper are obtained from approximations using RBD representations expressing the 
logic arrangements of the components. The MTLs of each component are expressed by the 
series RBD as exemplified in Figure 2 for a four-testing level case. They are extensions of 
previously derived equations for KooN configurations by Oliveira and Abramovitch [6]. 
Several other analytical equations for KooN configurations are publicly available (the most 
recent ones being those of Jahanian [7] and Innal et al [8] although not for systems subject to 
MTL. 

Fault tree analysis has been around since the 60´s and was extensively used in the Reactor 
Safety Study [9]. Until quite recently most fault tree programs were based on the average 
values of unavailability of each component which were combined using the probabilistic 
rules for the various logic configurations of the components. In fact the vast majority had 
algorithms for the determination of the minimal cut sets, which were then combined by some 
upper-bound method to give the PFD of the system. The more modern FT programs use 
binary decision diagrams for the logic part and numerical integration and averaging of the 



   
   
corresponding time-dependent unavailability functions. The GRIF-Tree program [10] used in 
this paper is one of the best examples of the modern FT programs. 

There exists a variety of good Monte Carlo simulation methods and programs that can 
be used for determining the PFD of safety systems. Their biggest advantage is their flexibility 
to model the vast majority of the situations found in practice. Their main disadvantage is the 
computational time needed to obtain precise results for the extremely reliable safety system 
configurations (PFDs of the order of 10-6 or less). In this paper we used a Harel State 
formulation [11] implemented in the Extendsim software [12]. 
 
3.4 Using the Numerical Method 
 
We hereby demonstrate the use of numerical method by starting from the development of a 
model for a single component subjected to four testing levels. Then extend it to the case of 
1oo2 and 2oo3 configurations. The generalization to KooN is then explained.  

3.4.1 Application of the Numerical Method: One Component Subject to Four Testing Levels 
 
The general representation of the time-dependent unavailability, PFD(t), of a single 
component subject to periodical tests (a single testing level) is indicated in Figure 3. The 
function in Figure 3 can be analytically expressed by the following equations: 
 

) . exp(1)( ttPFD λ−−=      0 < t < T 
)]( . exp[1)( TttPFD −−−= λ     T < t < 2T 
)]2( . exp[1)( TttPFD −−−= λ     2T < t < 3T  (1) 

... 
]})1([ . exp{1)( TnttPFD −−−−= λ    (n-1).T < t < n.T 

A more compact analytical representation is given by: 
 

)],( . exp[1)( TtModtPFD λ−−=     0 < t ≤ n.T  (2) 
where 
 ] . )/(),( TTtInttTtMod −=        (3) 
 
  

Figure 3 – Graphical representation of PFD(t) of one component under periodical  
testing (single testing level) 

 
As indicated in Section 2.1, the logical representation of the four testing levels is that 

of an RBD with each of the four testing levels considered as an independent component of a 
series system, as presented in Figure 2. Hence to obtain the PFD(t) of the component subject 



   
   
to four testing levels, one must use the probabilistic expression of the union of the 
unavailabilities of the four testing levels: 
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To simplify the graphical representation and better explain the numerical method, let 

us show an example where T1=1000h, T2=4000h, T3=8000h and T4=16000h. The specific 
values of the failure rate and of the coverage coefficients for the various testing levels are not 
important at this point. For this case, the PFD(t) for each of the four testing levels are 
presented in Figure 4. 

Applying Eq.(4) by numerically combining the functions in Figure 4, one obtains the 
PFD(t) of the component subject to the four testing levels, resulting in the function shown in 
Figure 5. To obtain the average value of PFD1avg for this component all we have to do is to 
perform a numerical integration of the function in Figure 5 from 0 to 16000h. This above 
numerical procedure gives the most accurate possible value for this average (the accuracy 
being governed by the numerical integration method). 

 
3.4.2 Application of the Numerical Method to Systems with Components Subject to Four 

Testing Levels 
 

The general representation of the time-dependent unavailability for one component, 
PFD1(t), subject to MTL is shown in Figure 5. Now suppose we would like to obtain the 
PFD(t) for a 1oo2 system and then obtain its average value. The logical function in this case 
is the intercession of the failures of the two components, and the corresponding probabilistic 
rule is the product of the PFD(t) of the two components. Thus by numerically multiplying 
PFD1(t) by itself (assuming the two components are identical), one obtains the PFD1oo2(t) as 
the function shown in Figure 6. The average value PFD1oo2avg is simply obtained by 
performing the numerical integration of the function in Figure 6 from 0 to 16000h. Again, 
this procedure gives the most accurate possible value of PFD1oo2avg. 

To generalize it to a KooN system, one must perform the numerical application of the 
known formula for the PFDKooN(t) given in Eq.(5) below, where PFD1(t) is the function for 
the component subject to the four specified testing levels given in Figure 5. 

[ ] [ ]
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KNi
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−

∑
+−=

−=
1

)(1)()( 11
    (5) 

The numerical method presented above can be used to any situation where the PFD(t) of 
the components can be expressed numerically. The example above was presented for two 
identical components because this is the usual case of KooN systems, but it is by no means 
limited to that situation. We have implemented the numerical method in Excel VBA and 
Wolfram Mathematica, and both gave identical results to a very high level of accuracy. 
 



   
   

 

Figure 4 – PFD(t) functions for one component for each of the four testing levels T1 to T4 

 
Figure 5 – PFD1(t) for one component subject to the specified four testing levels 

 
 

Figure 6 – PFD1oo2(t) for a 1oo2 system whose components are subject to the  
specified four testing levels 



   
   
3.5 Approximate analytical equations for systems with components subject to MTL 

We have developed a general approximate equation for the evaluation of the PFD of a 
KooN system with components subject to up to five testing levels. Since the general equation 
is too lengthy to show in this paper we will only present here its application to the case of a 
1oo2 and 1oo3 systems with three testing levels. They are given below: 
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The formation law for the development of such equations can be easily explained. 
From the 1oo2 case, it can be seen that the first three terms correspond to average values of 
the combination of two failures of the same testing level (T1 to T3). The other three terms 
correspond to two by two combinations of the products of the average unavailability values 
due to different testing levels. The latter three terms contain the approximations because the 
integration of the time-dependent piecewise functions cannot be analytically expressed. 
Similar explanation can be given for the 1oo3 case except that now there are more 
combinations to be considered as you need three failures to make the system unavailable. 

The general KooN equation is developed along the same line, namely, by combining 
the failures of each testing level to form the N-K+1 failures needed to make the system 
unavailable. 

Common-mode failures can be easily introduced by using the beta-factor model. The 
general assumption here is that only dependent failures among the failures due to the same 
testing levels are considered (first three terms of the equations), and not a more generic 
common-cause failure which could also occur between the combinations of failures of 
different testing levels. This assumption is, of course, debatable. 

3.6 Applying Fault Trees to the Modelling of Systems with Components Subject to MTL 

Most existing FT software programs contain a KooN type gate where the user 
specifies the values of K and N and the program constructs the proper logic of the specified 
KooN configuration using the user specified basic events. In the case of application to 
components subject to MTL, each input to the KooN is formed by an OR gate with the 
failures at each testing level as its input. An example of FT for a 1oo2 system with four 
testing levels is shown in Figure 7.  

The way the different FT programs actually quantifies the PFDavg of the KooN 
system varies among the existing programs. As indicated before, in this work we used GRIF-



   
   
Tree [12] to solve the FTs for all configurations, which is undoubtedly one of the most 
advanced FT programs available in the market. It is not clear from the User Manual how 
GRIF-Tree performs the calculations, but it indicated that the Albizia computational engine is 
used to solve the fault tree. A recent book just published by Aubry & Brinzei [13] explains in 
details the algorithm used in Albizia which is based on the application of binary decision 
diagrams (BDD). Since in GRIF-Tree the results are also presented in time-dependent format 
it can be inferred that it uses some kind of numerical solution similar to the numerical method 
shown in Section 2.4.  

 

Figure 7 – Example of FT for a 1oo2 System with components subject to four testing levels  

3.7 Application of the Simulation Method to Systems with Component subject to MTL 

The simulation model can be readily constructed using a general finite-state model. State 
models can become rather involved and hard to maintain. Therefore the components have 
been modelled as Harel State charts [11]. The State chart modelling paradigm has previously 
been implemented in our custom library of the general simulator ExtendSim [12]. Special 
features of hierarchical state modelling which are used here are hierarchical variable 
handling, where the scope of variables is only within its own hierarchy. In this way, the 
periodic test times Ti, and the actual time when the last test was performed are variables 
global to the whole model, while the failure rates λi and the diagnostic coverage factors Ci of 
each testing level are local to each component (though they are all equal in our simplified 
case). Figure 8 shows the state chart sub-model of a component with three testing levels in 
addition to the online diagnostics. As indicated by Assumption #2 in Section 2.1, component 
repair is not considered here; therefore there are no repair states in the model. 

In the initial state the component is working. The type of failure is randomly chosen 
according to the failure rate λ and the coverage factors Ci , deciding which state transition 
U0, ..U3 is chosen. The component stays in state Ui until the next test of level i occurs, when 
it is immediately transferred to the working state and starts the next loop. As a component 
state the working state is used which is informed to the super-model as ‘WorkingOut 
=True/False’. Components are then combined into systems according to the logic of the 
system configuration. Figure 9 shows the system level model (the super-model with respect 
to the components) with up to four components (Comp1 to Comp4) of the type shown in 
Figure 8 and the possibility of Common Cause Failures (CCF). The system can be configured 
using the parameters k and N and by excluding/including CCF (besides changing the 



   
   
component parameters). Statistics on system failures are collected in the block ‘System’, 
while detailed component statistics are available in the component sub-models. 

 

Figure 8 - State-based simulation sub-model of a component with 3 testing levels 

 

Figure 9 - System model of up to four components in KooN configuration and the  
possibility of CC Failures 

 

3.8 The Consideration of CCF 

As indicated in Figure 3, a component subject to MTL is here represented as a series system 
of “independent components” each one detectable at a given test level. They can also be 
thought as different failure modes of the same component, which seems to be a better idea. 
The latter is commonly used in the construction of fault trees where the failure of a 
component is represented by an OR gate with its different independent failure modes listed as 



   
   
basic events of the gate. By adopting this representation we introduce CCF contributions for 
the failure modes at each testing level. Hence, using the Beta-Factor Model for CCF, Eqs. (6) 
and (7) must be modified by multiplying each failure rate by (1-β), and by adding the 
following CCF term to both equations (actually this CCF term would be the same for any 
KooN configuration with three testing levels) 

222
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13_

TTT
tCCFKooN βλβλβλ ++=

   (8) 

In Eq.(8) we have considered the same value of beta for all three testing level, but of course, they 
could be different for each testing level. One could also apply a different CCF model or use different 
beta factors for different redundancy levels. 
 
4. COMPARISON OF RESULTS 

4.1 Results Obtained without CCF 

Results obtained with the different methods for systems with components subject to 
MTL are presented in this section. The value of 1.0E-6/h was used for the dangerous 
undetected failure rate (λDU) for all components. Values of the test periods and the 
corresponding coverage factors are given in Table 2.  

Table 2 – Data used for comparison of results 

Test 

Levels 

Test Period 

Parameter 

Test Period 

(hours) 

Coverage 

Coefficien

t 

One Test Level T1 38400 1 

Two Test Levels T1 320 0.5 

T2 38400 1 

Three Test Levels T1 320 0.5 

T2 3840 0.9 

T3 38400 1 

Four Test Levels T1 320 0.5 

T2 3840 0.9 

T3 7680 0.99 

T4 38400 1 

 
A comparison of the results obtained with the different methods for various cases of 

KooN configurations from 1oo1 to 3oo4 and for the number of testing levels varying up to 4 
are shown in Table 3. 
 

Table 3 – Comparison of results obtained with different methods for various  
systems configurations and various testing levels 

Case 
MTL  

Appr. Eq. 
Nmerical  GRIF-FT Extend Ratio MTL/ 

Num. 

Ratio 

MTL/FT 

Ratio MTL 

/Extend 

1oo2_1 4,92E-04 4,78E-04 4,78E-04 4,79E-04 2,9% 3,0% 2,6% 

1oo2_2 1,24E-04 1,23E-04 1,23E-04 1,23E-04 0,8% 1,1% 0,8% 

1oo2_3 4,18E-06 4,24E-06 4,24E-06 3,98E-06 -1,4% -1,3% 4,8% 

1oo2_4 1,57E-06 1,63E-06 1,63E-06 1,67E-06 -3,7% -3,9% -6,4% 

1oo3_1 1,42E-05 1,35E-05 1,35E-05 1,41E-05 5,2% 5,0% 0,7% 

1oo3_2 1,80E-06 1,76E-06 1,76E-06 1,81E-06 2,3% 2,4% -0,6% 

1oo3_3 1,01E-08 1,04E-08 1,04E-08 8,71E-09 -2,9% -3,0% 13,8% 



   
   

Case 
MTL  

Appr. Eq. 
Nmerical  GRIF-FT Extend Ratio MTL/ 

Num. 

Ratio 

MTL/FT 

Ratio MTL 

/Extend 

1oo3_4 2,40E-09 2,60E-09 2,61E-09 2,68E-09 -7,7% -8,1% -11,7% 

2oo3_1 1,48E-03 1,41E-03 1,41E-03 1,40E-03 5,0% 5,3% 5,4% 

2oo3_2 3,73E-04 3,65E-04 3,64E-04 3,66E-04 2,2% 2,4% 1,9% 

2oo3_3 1,26E-05 1,27E-05 1,27E-05 1,23E-05 -0,8% -0,7% 2,4% 

2oo3_4 4,71E-06 4,88E-06 4,89E-06 4,83E-06 -3,5% -3,7% -2,5% 

1oo4_1 4,35E-07 4,08E-07 4,08E-07 4,30E-07 6,6% 6,6% 1,1% 

1oo4_2 2,78E-08 2,69E-08 2,69E-08 2,77E-08 3,3% 3,4% 0,4% 

1oo4_3 2,60E-11 2,74E-11 2,75E-11 *** -5,1% -5,3% - 

1oo4_4 3,91E-12 4,43E-12 4,47E-12 *** -11,7% -12,6% - 

2oo4_1 5,66E-05 5,29E-05 5,29E-05 5,41E-05 7,0% 7,1% 4,4% 

2oo4_2 7,20E-06 6,95E-06 6,95E-06 7,18E-06 3,6% 3,6% 0,3% 

2oo4_3 4,04E-08 4,16E-08 4,16E-08 3,83E-08 -2,9% -2,8% 5,2% 

2oo4_4 9,59E-09 1,04E-08 1,04E-08 1,06E-08 -7,8% -8,1% -10,5% 

3oo4_1 2,95E-03 2,76E-03 2,76E-03 2,75E-03 6,9% 6,9% 6,8% 

3oo4_2 7,47E-04 7,22E-04 7,22E-04 7,22E-04 3,5% 3,5% 3,3% 

3oo4_3 2,51E-05 2,53E-05 2,53E-05 2,55E-05 -0,8% -1,0% -1,6% 

3oo4_4 9,43E-06 9,75E-06 9,78E-06 9,74E-06 -3,3% -3,5% -3,3% 

* These two values were not calculated with the simulation model because they are too small and would need too 

much computational time to be obtained. 

As can be seen from Table 3, all four methods give very similar results. The largest 
differences between the results of the approximate analytical equations with respect to the 
other three methods is of the order of 10%, indicating that the derived equations can be used 
without introducing any significant deviations from the results. It is always important to 
indicate that because of the linearization approximation, the results of the analytical equations 
should not be used for values of λT greater than 0.1 (a restriction that is not very often 
attained in practice). 

It is also interesting to note that the results obtained with the numerical method and 
those from GRIF-Tree differ by less than 1% in all cases, indicating than the latter must use a 
numerical integration model to obtain the time-averaged value of the system PFD. 

We have performed several other comparisons by varying the computational 
parameters, namely, the failure rates, the testing period and the coverage coefficients. In 
Figure 10 we show the comparison of results obtained for the four testing level case by 
varying the third coverage coefficient (C3) from 0.1 to 0.9. This corresponds to an increase of 
the part of the failure rate that is left to be detected at the last (fourth in this case) testing 
level. As can be seen, the results continue to be very close between all methods. 

 

4.2 Results Obtained with CCF 

By using the same CCF method (Beta-Factor model in this case) the inclusion of CCF 
has the effect of making the results even more equal between the various computational 
methods. The reason is simply because the CCF model is the same for all methods and it 
tends to be the dominant term specially for the higher redundancy configurations. 

 

 

 



   
   

 

5 APPLICATION TO THE CASE OF A BOP  

The fact that some components of a BOP are subject to many testing levels (up to five 
in some cases) was the main motivation for the development of this work.  

A BOP is a much more complex system than just a KooN configuration and therefore 
the approximate analytical equations presented in this paper cannot be directly applied to it. 
Nevertheless there are many instances of such configurations inside the BOP structure and 
the equations could still be applied to them.  

For lack of space, here we will not go into the details of the application to BOP. We 
only would like to mention that the other three methods (numerical, FT and simulation) could 
be equally applied to the case of a BOP. The application of the numerical method as indicated 
here would require some method to develop the logical structure of the BOP (a reliability 
structure function). This could in the form of a minimal cut sets, for example. In this case, the 
application of the numerical method would be the same as the application of a fault tree 
program that performs the quantitative evaluation of the PFDavg of the system by numerical 
integration of the time-dependent, PFD(t), of the system. 

6 FINAL COMMENTS 

Most safety systems currently in use may be subject to more than the usual two 
testing levels: online diagnostics and periodic testing. Some more complex safety systems, 
such as Blowout Preventers (BOPs) currently in operation in various parts of the world, have 
some of their key components subject to multiple testing levels (up five levels in some cases). 

In this paper we investigate possible solution methods for the calculation of PFD of 
safety systems subject to multiple testing levels (MTL), develop an approximate analytical 
equation for the evaluation of the PFD of safety systems subject to MTL based on simplified 
RBDs, assess the differences in results of PFD values obtained with various methods: 
approximate analytical equations, numerical integration, fault tree analysis, and Monte-Carlo 
simulation. It is shown that with proper modelling all methods give acceptable results, that is, 
within acceptable differences between them. 

 

Figure 10 - Comparison of PFD results for a 2oo3 system varying the Level 3 
diagnostic coverage coefficient 
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