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1. INTRODUCTION 
 

 Offshore drilling is an activity inherent to the oil and gas industry as it is essential in confirming the 

economic feasibility of hydrocarbon reservoirs. However, risks related to uncertainties, i.e: lack of 

knowledge about risk influence factors (RIF) and, risks inherent to typical major accident hazards (MAH), 

are directly associated with this activity, where, in accordance with [1], blowouts are assumed to be one 

of the major contributors to such risk.  

 The risks inherent to drilling projects have to be assessed prior to and during the operations, as in 

any other hazardous industry. Risk assessment studies are part of the regulatory framework of many 

countries and are a critical document for the permitting process of drilling activities. For instance, the UK 

Health and Safety Executive (UK) [2], states that the primary objectives of risk assessment in this context 

are to identify and rank the risks so that they can be adequately managed and to examine associated risk 

reduction measures to determine those most suitable for implementation. 

 After the Macondo accident, the Oil Industry’s concern about the quality of the risk assessment 

studies has increased.  According to the National Commission on the BP Deepwater Horizon Oil Spill and 

Offshore Drilling [3], the Macondo blowout requires a reassessment of the risks associated with offshore 

drilling. 

 In addition, in some new frontiers, most exploratory blocks and potential reservoirs are located in 

deep waters and unknown environments. This requires specific wells to be designed and constructed 

under complex, hazard conditions and with higher degree of uncertainty, leading one to conclude that the 

risk of blowout in such conditions will also increase. 

 Nevertheless, it is an oil & gas industry practice to assess the risks of complex drilling projects 

based on the same traditional methods that are applied to common drilling projects, with low degree of 

complexity and uncertainty, i.e.: where wells have standard designs and are located in environments 

where geological and geophysical (G&G) information is readily available. For complex projects, this 

approach yields risk assessments that do not reflect the specificities of the project and, consequently, do 

not play their essential role of communicating the risk, in order to direct risk management efforts and risk-

based decision making during the project’s life cycle. 

 Most specifically, the limitations identified in standard risk assessment studies for blowout during 

offshore drilling are related with the generalization of the risk model. This generalization is related with 

the adoption of generic fault tree and event tree models and with the direct adoption of data gathered from 

failure and accident data banks. This approach may be suitable for projects with standard well designs, 

usual topside systems and areas with geological and geophysical (G&G) information quite available.  

  This paper presents the causes of such presumptions and proposes a Bayesian based risk analysis 

framework capable of reflecting the specifics of the project. The proposed method was developed 

considering: (i) concepts of drilling engineering, more specifically those related to the causes of deep 

blowouts; (ii) review of blowout accident precursors and risk influence factors (RIF), including human 

and organizational factors (HOF); (iii) review of state of the art risk assessment techniques applied in the 

hydrocarbon industry; (iv) application of methods for incorporating expert judgment and new 



   
   
observations in quantitative risk analysis; and (v) application of Bayesian Network in risk assessment. 

The application of Bayesian Network to model the risk allows to address some specificities inherent to 

blowout phenomenon that are not properly captured by usual methods, i.e: dependability, uncertainty and 

dynamism.  

 Drilling engineering, causes of blowout and traditional quantitative risk analysis methods (fault tree 

and event tree) are not addressed in this paper.  

 

 

2. OBJECTIVES 
 

 The objective of this paper is to present the main problems found in current deep blowout 

quantitative risk analysis and present the potential advantages of modeling such risk in Bayesian Network. 

The specific objectives are to: 

- Present the main problems inherent to traditional deep blowout quantitative risk analyses and their 

impact on the quality of these studies; 

- Identify potential solutions to address these problems and outline a proposed Bayesian based 

method for blowout risk analysis;  

- Illustrate with a micro scale example the basis of an Bayesian based method to assess blowout risks 

during drilling operations; 

  

 

3. LIMITATIONS OF CURRENT DEEP BLOWOUT QRA 
 

 The challenge in modeling a blowout hazard is to conduct an analysis which reflects the actual 

equipment and procedures that are used. The models that are often utilized are generic, unable to 

distinguish between different platforms, systems and operators [4]. In addition, as it will be presented, the 

models used for quantification are not suitable to deal with significant levels of uncertainty and changes 

which are inherent to some drilling projects. This combination leads to generic risk analyses that, in most 

cases, fail to reflect the specifics of the project.  

 The findings presented throughout this section result from a review of works developed by several 

authors, mainly Refs ([3]-[10]) and are in line with author’s own professional experience, which includes 

revision of blowout QRAs, mainly for the purpose of planning and executing risk based audits for drilling 

projects.  

 The Table 1 presented next summarizes the aspects that affect the quality of the blowout QRAs 

and, for each of them, addresses improvement suggestions, which were taken into consideration to 

develop the proposed Bayesian network framework for blowout risk analysis.  

 



   
   
Table 1: Summary of the main aspects that affect quality of deep blowout QRA and proposed solutions. 

# Aspects of Blowout QRA Problems Proposed Solutions 

1 

Failure to consider customized 

Risk Influence Factors (RIF) into 

the QRA mainly the ones related 

to Human and Organizational 

Factors (HOF). 

 

Operation’s specific RIF are 

not taken into consideration. 

 

Risk model must consider 

specifics of: well design, 

equipment/ systems, 

procedures and   location. 

 

HOF are not incorporated. Include human barrier 

elements and relevant barrier 

indicators in the model; 

2 

Uncertainty is not considered as a 

component of the risk. 

Blowout accident data banks 

and equipment failure data 

banks are extensively used as 

basis for estimating the 

blowout frequency; 

Address uncertainty inherent 

to this system by integrating 

expert judgment into 

Bayesian Network (BT); 

Adoption of a safety factor 

when uncertainty is recognized 

as a risk factor. 

3 

Failure to address: redundant 

failures, common cause failures; 

or mutually exclusive primary 

events. 

Fault Tree / Event Tree 
Model blowout fault/ event 

trees into Bayesian Network 

(BT). 

4 

Blowout QRAs are static, i.e: the 

risk is not updated according to 

new evidence. 

 

Blowout models do not treat 

dynamics and changes in 

operational parameters. 

Design and implement a risk-

based monitoring program 

for risk updating, integrated 

with the Bayesian Network 

Model. 

 

 
a. Risk Influencing Factors (RIF) and Human and Organizational Factors(HOF) 

 

 There have been parallel efforts to develop methods for the formal inclusion of human and 

organizational factors into QRA. Examples from nuclear and airline industries include Model of Accident 

Causation using Hierarchical Influence Network (MACHINE), the Work Process Analysis Model 

(WPAM), System-Action-Management (SAM), Omega Factor Model, I-RISK, Integrated Safety Model 

(ISM) and Causal Modeling of Air Safety. With respect to the QRA in the offshore industry, 

Organizational Risk Influence Model (ORIM), Barrier and Operational Risk Analysis (BORA) and 

Operational Conditional Safety (OTC) are relevant [3]. 

 Also, some research on incorporation of HOF into Offshore QRA was developed by (OGP, 2010) 

“Human Factors in QRA” [11]. However, not much has been evidenced to specifically incorporate HOF 

into deep blowout QRA.  

 From all these methods, the BORA and OTC were developed with a focus on the oil and gas 

industry. More specifically, BORA-Release analyzes the effect of safety barriers introduced to prevent 

hydrocarbon releases, and how platform specific conditions of technical, human, operational, and 

organizational risk influencing factors influence the barrier performance.  The method allows analysis of 

the effect on the hydrocarbon release frequency of safety barriers introduced to prevent release, and at 



   
   
what degree platforms’ specific conditions of technical, human, operational, and organizational RIFs 

influence the barrier performance [12].  

 BORA-Release comprises of the following main steps: (1) development of a basic risk model 

including release scenarios, (2) modeling the performance of safety barriers, (3) assignment of industry 

average probabilities/frequencies and risk quantification based on these probabilities/frequencies, (4) 

development of risk influence diagrams, (5) scoring of risk influencing factors, (6) weighting of risk 

influencing factors, (7) adjustment of industry average probabilities/frequencies, and (8) recalculation of 

the risk in order to determine the platform specific risk related to hydrocarbon release. These various 

steps in BORA-Release are presented and discussed in specific bibliography (Ref [12] – [14]). 

 Other relevant work that suggests similar steps as the ones presented by BORA was developed by 

SINTEF (2012) [15]. The main steps of the method are: (1) Identify possible critical events that may lead 

to environmental releases, (2) Select critical scenario and identify initiating events, (3) Establish a 

simplified event tree to identify likely event sequences and the associated barrier functions, (4) Perform 

an analysis of the relevant barrier functions to identify weaknesses and an estimation of reliability, (5) 

Assess relative performance of the barrier functions by performing an event tree analysis, and (6) Propose 

barrier indicators based on findings from the above, i.e: risk influence factors. 

 It should be noted that a barrier function is any function planned to prevent, control, or mitigate 

undesired events or accidents. Barrier functions describe the purpose of safety barriers or what the safety 

barriers shall do in order to prevent, control, or mitigate undesired events or accidents, for example: 

“close flow” and “stop engine”. A function that has at most an indirect effect is not classified as a barrier 

function, but as a Risk Influencing Factor/Function [16]. 

 Therefore, both methods are based on accident precursors and present an effective process for 

identifying barriers, barriers functions and RIF (including HOF) that should be considered in a QRA.  The 

transparent processes allow the possibility of performing statistical adjustments of these variables based 

on expert opinions. Thus, the application of these methods in blowout QRA is suitable for addressing the 

problem related to the incorporation of relevant technical RIF and HOF in QRA. This is the first solution 

required in order to implement the second and final step of this research paper which is to test the 

application of advanced statistical methods, i.e: Bayesian Networks. 

 Presented next are the problems directly related to the statistical and mathematical framework 

usually adopted in blowout QRA studies, which are in items 2, 3 and 4 of Table 1. 

 

b. Traditional Statistical Approaches and Mathematic Framework to Estimate 

Accidental Frequencies 

 

 This subsection will discuss the negative impacts caused by the extensive application of traditional 

statistical methods in the quality of the blowout QRAs. For the purpose of this paper, traditional statistical 

methods are characterized by: (i) probability estimations that are limited to the consultation of historical 

data banks (accidental frequencies data banks and/or equipment failure data banks); and (ii) the 

probability ‘P’ of an accidental event ‘A’ is modeled based on a set of event trees (ET) and fault trees 

(FT).  

 Accident probability estimation is a common and central step to all quantitative risk assessment 

methods and with Blowout QRA it is not different. However, the current blowout QRAs are developed 

based on blowout accidental frequency data banks that are generally normalized for the unit “per well 

drilled or per operation” and separated by operation and category (as presented in  

Table 2), which summarizes the approach presented by the Blowout Frequencies Report 434 (OGP, 2010) 

[17]. 

 



   
   
Table 2: Example of the presentation of blowout frequency data bank, developed based on [17]. 

Operations Categories 

 Exploration drilling shallow gas; 

 Development drilling shallow gas; 

 Exploration drilling , deep (normal wells); 

 Exploration drilling , deep (HPHT wells); 

 Development drilling , deep (normal wells); 

 Development drilling , deep (HPHT wells); 

 Completion; 

 Wirelining; 

 Coiled Tubing; 

 Snubbing; 

 Workover; 

 Producing wells; 

 Gas injection wells; 

 Water injection wells; 

 Top side blowout; 

 Diverted well release; 

 Well release; 

 Subsea blowout; 

 

  

 Therefore, the blowout frequency is traditionally defined based on the combination of the specific 

operation and different potential categories that the analysis intends to cover. These statistics can also be 

adjusted based on elements that can contribute the blowout, as suggested by the BlowFAM initiative [18] 

which suggests an evaluation of top side equipment, procedures safety culture, management system and 

organization. This step of adjustment is performed through a comparison of specific sites aspects against a 

standard operation relevant for generic blowout frequency.  

 In an even more traditional assessment approach, reliability data are directly applied and not always 

adjusted for any differences between the basis of the kick frequency (i.e. well operation practices, 

management, etc.) and site specific conditions. 

 As highlighted by [15], historical data banks and reports are investigated to identify information 

about reliability performance. Since historic data are seldom broken down to a sufficient detailed 

component level, it is not possible to suggest that the reliability estimates are more than “rough estimates”, 

averaged over a number of possible demand conditions. Normally, reports and historical data do not 

provide information that can be used to adjust barrier performance to the specific scenario in question. 

 The blowout RIF (or elements that can impact the risk of a blowout) may have a significant degree 

of uncertainty, mainly during the design phase of an exploration campaign. Some examples of potential 

blowout RIF with a significant degree of uncertainty are: pore pressure gradient, fracture pressure 

gradient, kick detection time, reservoir pressure, mud weight, available kick tolerance and volume of 

drilling fluid into the well. 

 Therefore, fault tree (FT) and event trees (ET) may be sufficient in some cases but it is not suitable 

for analyzing complex and dynamic socio-technical systems that present one or more of the following 

characteristics: necessity for probability updating, redundant failures, common cause failures; or mutually 

exclusive primary events [7].  

 The following characteristics usually available in drilling projects, mainly exploratory projects,  

suggest that the traditional statistical approach is not suitable for calculating blowout occurrence 

probability: (a) no statistical meaningful data are available, (b) in some cases, a complete new system is to 

be designed (in this specific case: a well), (c) involves high reliability systems where few failure data are 

available, (d) its dynamics, for example: changes in control/ inspection parameters as well as in G&G 

information. 

 Terje Aven & Bjørnar Heide [5] for instance, investigated to what extent risk analysis meets 

scientific quality requirements of reliability and validity by comparing traditional statistical methods, 

strongly dependent on  historical data banks and Bayesian approaches, concluding that traditional 



   
   
statistical methods meet the reliability and validity criteria only if a large amount of relevant data is 

available.  

 Also, more specifically, as stated by [19], the dynamic nature of blowout accidents, resulting from 

both rapidly changing physical parameters and time-dependent failure of barriers, necessitates techniques 

capable of considering time dependencies and changes during the lifetime of a well. The combination of 

having an uncertain scenario in the design phase, together with the acquisition of great amount of new 

information during the operational phase, which is also very dynamic (changes often occur), generates an 

appropriate situation for a Bayesian approach. Therefore, the Bayesian network method provides greater 

value than the bow-tie model (based on fault tree and event tree) since it can consider common cause 

failures and conditional dependencies along with performing probability updating and sequential learning 

using accident precursors. 

  

 

4. APPLICATION OF BAYESIAN NETWORK ON DEEP BLOWOUT RISK 

ANALYSIS  
 

 Bayesian network (BN) takes advantage of Bayes’ theorem to update the prior probabilities of 

variables given new observations, called evidence ‘E’, rendering the updated or posterior probabilities 

[19]. 

 The Bayesian network (BN) is a probabilistic graphical model  that represents a set of random 

variables and their conditional dependencies via a directed acyclic graph (DAG). The Bayesian Network 

(BN) relies on the Bayes’ theorem. 

 Bayes' theorem expresses the conditional probability, or 'posterior probability', of an 

event A after B is observed in terms of the 'prior probability' of A, prior probability of B, and the 

conditional probability of B given A, denoted as B | A. Bayes' theorem is valid in all common 

interpretations of probability [20]. 

Bayes' theorem provides an expression for the conditional probability of A given B, which is equal 

to: 

𝑷(𝑨 | 𝑩) =
𝑷(𝑩 | 𝑨)𝑷(𝑨)

𝑷(𝑩)
 

(1) 

Where: 

- P(A) and P(B) are the probabilities of A and B independent of each other. 

- P(A|B), a conditional probability, is the probability of A given that B is true. 

- P(B|A), is the probability of B given that A is true. 

 

In Bayesian Network, the usual way of representing such influences is by a diagram of nodes and 

arrows, connecting influencing variables (parent variables) to influenced variables (child variables) [21].  

The model below illustrates the influences between variables. 

 

 
 

Figure 1: Representation of influences between variables. 

 

The graph structure in Figure 1 can be represented by Equation 2 presented below. 

 

http://en.wikipedia.org/wiki/Graphical_model
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Conditional_independence
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Marginal_probability
http://en.wikipedia.org/wiki/Conditional_probability


   
   

𝑃(𝑋1, 𝑋2, 𝑋3)=P(𝑋1) P(𝑋2|𝑋1) P(𝑋3|𝑋2) 

  (2)  

 
Which can be re-written in the following form [21]: 

 
𝑃(𝑋1, 𝑋2, 𝑋3)=P(𝑋1|parents(X1))P(𝑋2|parents(X2))P(𝑋3|parents(X3)) 

  (3)  

 

Therefore, for “n” random variables X1, X2, …, Xn, a direct acyclic graph is associated with the 

Xj variable. Then, the graph is a Bayesian network, representing the variables X1, X2, …, Xn, if: 

𝑷(𝐗𝟏, 𝐗𝟐, … , 𝐗𝐧) = ∏ 𝑷(𝑿j |𝒑𝒂𝒓𝒆𝒏𝒕𝒔(𝑿j))

𝒏

𝒋=𝟏

 

(4) 

Where: parents (Xj) denotes the set of all variables Xi, such that there is an arc from node I to 

node j in a traditional acyclic graph [21].  

Therefore, a stochastic matrix can be developed by defining the proper level of dependability 

between the variables of the blowout risk model, including: direct and probabilistic cause and effect 

relationship between safety barriers and barriers functions and systems as well as impact of risk 

influencing factors (RIF) in the system.  

 

4.1 Development of Bayesian Network for Analyzing Risk of Deep Blowout – A Micro 

Scale Example 

 

The figure below presents the flowchart with the main steps that are required to develop a 

Bayesian Based risk model capable of overcoming the current limitations of the deep blowout risk 

analysis already mentioned in previews sections. 

 
Figure 2: Flowchart presenting the milestones and method of the research. 

 



   
   

The specific blowout risk model (customized model) is modeled based on a generic blowout risk 

model, represented by Item 1 presented at Figure 2. In this model, the kick is the top event of the blowout 

and its basic cause the loos of primary barrier (hydrostatic pressure) assuming that proper G&G 

conditions are available, i.e: permeability and pressure in reservoir. 

 

 
 

Figure 3: Generic blowout bow-tie model. 

 

The blowout model is developed translated into DAG using Bayesian Network (BN) software as 

demonstrated by Figure 4. 

 
Figure 4: Generic blowout BN model. 

 



   
   

Once the generic model is defined a detailed assessment on the performance of safety barriers can 

be performed based on is systems and RIF. The performance of the barriers’ functions is assessed by 

evaluating their failure probabilities in a BN framework in order to capture potential dependability. This 

assessment must be performed based on the specific risk influence factors (RIF) of the installation, 

organization and well design. Another advantage of performing this step in a BN framework is the 

possibility of incorporating expert judgment in the analysis. 

This assessment also allows the identification of safety indicators associated with the 

performance of the safety barriers. The term indicator can be used in various contexts, for example 

performance indicators, safety indicators, safety performance indicators, direct performance indicators, 

indirect programmatic performance indicators and risk indicators [22]. In this work the definition will be 

of safety indicator or simply KPI. 

Systematic feedback on blowout risk is an important means of prevention. Safety management of 

industrial systems like deep water drilling therefore requires monitoring of safety performance, including 

the use of safety indicators. The main purposes of safety indicators are to monitor the level of safety in a 

system, to motivate action, and to provide necessary information for decision makers about where and 

how to [10].  This feedback process also allows the risk to be updated during the operational phase where 

new evidence can be considered. 

The Figure 5 presents a micro scale example of hypothetical detailed assessment of the safety 

barrier kick detection which function is to detect the well flow before it reaches the blowout preventer 

(BOP). The barrier system related with the performance of this barrier function is presented in form of 

block diagram and, one level below, the risk influencing factors that may affect the performance of the 

system. The Figure 6 presented in sequence presents its mapping into BN. 

 

 
Figure 5: Safety barrier performance assessment (kick detection) in block diagram. 

 

  



   
   
 

 

Figure 6: Safety barrier performance assessment (kick detection) in BN. 

 

After modelling the system in BN is necessary to identify the risk influencing factors and KPI 

that will allow the effective customization of the model for the current operational reality of each rig as 

well as incorporation of human and organizational factors. The table below provides examples of RIF and 

KPI that are applicable to the barrier elements of the selected barrier system. 

 

Table 3: Risk influencing factors and KPIs. 

RIF KPI or direct observation of evidences KPI - States of the variable 

(measurement) 

Maintenance of drilling 

instrumentation 

Preventive maintenance system % Accomplishment against 

manufacturer standards. 

Inspection/ testing of drilling 

instrumentation 

Monitor recent/ current failures in elements 

of the system (sensors) 

Evidence (Failed / Operational) 

Adequacy of well control 

procedure 

Audit on the adequacy of the procedure to 

rig systems and knowledge of operators 

(expert judgment) 

Audit result: Poor, Medium or 

Good. 

Well control competence Audit on compliance with Well Control 

Competence by current crew. 

% Accomplishment 

Kick drills performance Record of drills % of satisfactory results given 

company’s policy. 

Supervision/ Communication Compartmental audit based on stress level 

caused for management pressure or multiple 

operations including workers fatigue. 

Audit result: Poor, Medium or 

Good. 

 

 



   
   

The update of the KPIs allows the prior probabilities to be initially adjusted in order to reflect the 

rig specifics and, during the operation, its update allows the implementation of a dynamic risk 

management system, i.e: updated over time in function of new evidences. 

It was create a simple Bayesian network that allows determining the numerical implications of the 

expert's opinion on the operator’s expectation of the reliability of the BOP. The expert’s opinion will be 

based upon evidences of the effectiveness of the preventive maintenance routine of the BOP and will be 

divided into three variables: poor practice, normal and good. 

 

Table 4: Encoded experts’ judgment for success/ failure of BOP based upon evidences of 

preventive maintenance effectiveness. 

Implementation of 

Maintenance Practices 

Success in Activation Failure in Activation 

Good 0.5 0.1 

Moderate 0.4 0.3 

Poor 0.1 0.6 

 

The Table 4 encodes the conditional probabilities of different expert forecasts for all possible 

actual situations of the maintenance practices. The first column encodes our knowledge that if the 

maintenance is being well implemented the BOP is more likely to be activate.  The expert will designate 

it as Good with chance 0.5 (50%), as Moderate with chance 0.4 (40%) and as Poor with a chance 0.1 

(10%). Similarly, the second column encodes our knowledge that the expert will designate an eventually 

failing as Good, Moderate, and Poor 10%, 30%, and 60% of the time it is requested the activation. The 

figure below shows the BN for the proposed model correlating the prior probability (BOP Failure) with 

the conditional table (experts forecast). 

 
Figure 7: BN diagram for probability distribution over statements made by the expert.  

 

Finally, both the structure and the numerical probabilities can be a combination of expert 

judgment, measurements and failure frequency data. To model this relationship it is required to set the 

variable maintenance evidences in their different states (poor, moderate and good) and define a prior 

failure probability for the BOP which was calculated based on MTTF data (Ref [24]; [25]) which equals 

to 8.26 x 10-3. 

Now it is possible to answer the question "What is the failure probability of the BOP if we have 

evidence that good/ regular or poor preventive maintenance practices are being implemented? The 

answers are given in Figure 8. 

 

mk:@MSITStore:C:/Program%20Files%20(x86)/GeNIe%202.0/genie.CHM::/Decision-theoretic_Modeling/BBNs.htm


   
   

 
Figure 8: Differed failure rates/ reliability for the three states of the variable maintenance 

effectiveness.  

 

The integration of RIF and experts’ judgment in the BN framework can be used to assess the 

different barrier functions of the blowout model as well as to monitor impact of changes of operational 

parameters in the blowout risk model. The approach will be the same. However, special attention must be 

given for the method of eliciting expert’s judgment into probability. It is important to highlight that the 

assessment presented by this section was an example on how to integrate experts’ belief into a BN model 

and not on the elicitation process. 

A formal methodology, as presented by Walls [26], shall be adopted for building prior 

distributions based upon expert judgment. Such a methodology provides a basis for formally combining 

the observed failure times that are regarded as realizations of the underlying stochastic model of 

reliability growth (in our specific case blowout accident precursors), with expert judgment, that is 

represented by a prior distribution reflecting the subjective engineering uncertainty about the parameters 

of the growth process [26]. 

As stated by [27], in the field of human reliability, human errors are seldom collected and 

registered in any error data bases. So in various fields like nuclear energy, process industry, offshore oil/ 

gas industry and aerospace the reliability/risk analysts often have to utilize expert judgment as input to 

quantitative analysis.  

 

 

5. CONCLUSIONS AND FINAL COMMENTS 
 

 

Most of deep blowout QRAs are unreliable once they: (i) do not reflect appropriately the RIF of 

the project; (ii) do not incorporate uncertainty factors; (iii) are static and not updated on the risk when 

new evidence become available; and (iv) fails in addressing redundant failures, common cause failures, or 

mutually exclusive primary events. This paper aimed to propose a Bayesian accident precursor-based risk 

analysis approach to address all these problems. 

The main purpose of this method is to reflect the specific risk of a drilling project, considering its 

specifics, uncertainty and eventual changes over time during the operational phase. More specifically, the 

method aims to achieve the following objectives: 



   
   

- Assure that blowout modeling reflects the specific risk influence factors (RIF) of a 

drilling project; 

- Incorporates human and organizational factors (HOF) as RIF; and 

- Move from a traditional statistical approach to a Bayesian Network (BN) in order to 

address uncertainty and dependability; 

- Establish key performance indicators (KPI) to allow risk updates due to new observations 

/ evidence; 

 

This paper presented the major steps to develop an accident precursor Bayesian based risk model 

for analyzing risk of deep blowout. A micro scale example focused in kick detection and BOP activation 

was presented in order to better illustrate its applicability. However, improvements and further efforts are 

required in order to implement this model in a real scale drilling project: 

- Customize all basic causes of the generic blowout model to a real project’s scale once 

this work was limited to customize only the kick detection; 

- Develop the conditional probability tables including understand specific situations of 

common cause failures; 

- Understand the applicability and limitations of incorporating expert judgment into the 

model to quantify the RIF mainly the ones related with HOF; 
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