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Abstract—This paper proposes the study of advanced fuzzy
time series to forecast wind turbines times-to-failure data. Failure
data predictions makes significantly influence to the availability
and reliability of an electrical system. The standards reliability
models usually used to predict stochastically these events are
mathematical and statistical complex and the use of fuzzy time
series brings new fields to reduce this complexity and time
processing.

Index Terms—Wind Turbines, Failure Data, Fuzzy Time Series,
Forecasting Models, Reliability Theory.

I. INTRODUCTION

The continuous growing of power system in the world
brings lots of challenges in the fields of power systems
stability, power quality, system protections and other fields. To
deal with this challenge, some reliability evaluation methods
are developed to study and predict failures in an electric
system. The reliability evaluation methods are today’s state
of the art to predict failure events [1] [2] [3].

The use of fuzzy time series for solving problems which
data can be interpreted as vague, linguistic, fuzzy values or
numbers was introduced first by Song and Chissom in 1993
[4] [5] [6] [7]. The advantages of using fuzzy time series lies
in the possibility to be implemented by algorithms, are easy to
improve algorithms to increase forecast accuracy and no need
to have strong background in mathematics and statistics.

The set of times-to-failure data from onshore wind turbines
are forecasting using the fuzzy time series and then compared
with state of the art reliability models usually used to pre-
dict them. The results obtained in this work shows that the
use of advanced fuzzy time series reduces the mathematical
and statistics complexity of the models, brings less machine
time consumption and better forecast accuracy than standard
reliability models.

II. WIND TURBINES RELIABILITY

The technology of wind turbines for generating electricity
dates back to the end of nineteenth century. Modern large wind
turbines developments date back to work in Europe and the
United States, later stimulated by oil price rises after the 1973
Yom Kippur War [8].

Wind turbines failures are normally resulting of an unac-
ceptable operational condition, such as an over-temperature,
over-speed or pitch problem. Exceptions may occur due to
gearbox, generator or blade failures [8]. The basic structure
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of a modern three-blade, upwind horizontal axis wind turbine
is exemplified by figure 1.
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Fig. 1. Wind turbine layout and terminology.
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The stochastic nature of mechanical or electrical equipment
failures, significantly influence the availability of a wind
turbine. The importance of knowing this availability has mo-
tivated several studies of reliability, since consumers, mainly
commercial and industrial sectors, are increasingly sensitive to
profit losses associated with unavailability of electrical system.
An accurate method to predict failure events is the use of
probability distributions for the times-to-failure data vector (1).
Time series are also an alternative method and in this paper
it will be studied the use of fuzzy time series with reliability
evaluation to better predict these times-to-failure events.
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IIT. RELIABILITY THEORY

(D

Life data analysis is a field of reliability engineering con-
cerned to determine the probability of failures for a given
set of failure data. Life data can be lifetimes of equipments
or products in the marketplace and can be expressed as the
time equipment/product operated successfully or the time that
equipment/product operated before it failed. These lifetimes
can be measured in days, hours, miles, cycles-to-failure or
any other metric with which the life or exposure of a product
can be measured [9].

The basis of life data analysis is supported in the study
and knowledge of the statistical distribution and its param-
eters. There are several distributions functions used in life
data analysis and reliability engineering, the most used are
exponential, normal, lognormal and Weibull. The probability
density function of the Weibull distribution (2) is one of the
most used in reliability engineering. The reason for that is due



to the versatility of this distribution in relation to the others
distributions such as exponential, normal and lognormal [9].

The probability density function, cumulative distribution
and reliability functions for Weibull distribution are respec-
tively given by (2) and (3):

=2 (M)ﬂ_le(t"”)ﬂ @)

n n
t—v\*
F(t):l—R(t):l—e(") 3)
where:
5@ probability density function;
F(t) cumulative distribution function;
R(t) reliability function;
t time;
B shape parameter;
n: scale parameter;
¥ minimum life.

The Weibull shape parameter are correlated with the various
stages of equipment life, i.e, early life (3 < 1), useful life (8 =
1) and Wear-out life (8 > 1). The scale parameter provides
information on the occurrence of a failure when it happen with
probability of 63.2%.

To obtain the parameters for a given distribution and a set
of data, the maximum likelihood method:

R
A=In(L) = In f(x;61,02, ... 0r) (4)
i=1
from the statistical point of view, is considered the most robust
method to estimate these parameters. The main idea about this
method stands in determining the most probable parameters
values of functions that fits a given set of data [9] [10] [11].
The parameters are obtained when the maximum value for
A is reached using some class optimizations algorithms like
Nelder-Mead, Ellipsoidal and others [12] [13] [14].

IV. Fuzzy TIME SERIES

Time series is a set of data indexed in time order or a
collection of observations made sequentially in time [15]. Most
commonly, a time series is a sequence taken at successive
equally spaced points in time. Thus it is a sequence of
discrete-time data. Examples of time series are the mean daily
temperature of a city, crude oil price per barrel and so on.
Time series analysis comprises methods for analyzing time
series data in order to extract meaningful statistics and other
characteristics of the data.

Time series forecasting is the use of a model to predict
future values based on previously observed values [16]. Time
series could be divide in two types, i.e., i-Deterministic Time
Series, where the pattern of the component of time series
almost fixed as time passed, and ii-Stochastic Time Series
where the pattern of the component of time series changing
during time [15]. Many methods to predict time series were
developed during decades, the main methods are the Naive

model, Mean method, Moving Average Smoothing, Weighted
Mean method, Exponential Smoothing, Additive Holt-Winters
method, ARMA and ARIMA models.

Fuzzy time series (FTS) combines the fuzzy set theory de-
veloped by Zadeh in 1965 with time series analysis. According
[17], the fuzzy set theory is being applied into wider and
wider areas, such as decision making, planning, logic, systems
theory, artificial intelligence, economics, control theory and
so on. The main reason for using fuzzy sets instead of
crisp sets is the advantage to deal with formal, powerful and
quantitative framework to cope with the vagueness of human
knowledge as it is expressed by means of natural languages.
The methodology around FTS are discussed briefly during the
explanation of these FTS methods described in items from V-
A to IV-D. The results obtained will be discussed in details
on section V.

A. Yu FTS Algorithm

The Yu FTS algorithm or Weighted FTS is very similar to
the Chen FTS algorithm [15] [18]. A complete description
of this algorithm could be viewed in [19]. The steps to
implement the algorithm are presented below.

Step 1. Define the universe of discourse:
U = |Dunin = D1, D + D3] 5)

based on historical data, min and max values of the data set
and proper numbers D; and D to adjust the range of data.
Another way to define the universe of discourse could be
implement using k-means clustering as presented in [20].

Step 2. Partition the universe of discourse (5) into n-
intervals with equal length:

U= [ul,UQ,...,un] 6)

The number of intervals could be defined by experience of
the analyst or by some analytical, e.g., Huarng method or
evolutionary algorithms that find the optimum number of
intervals [15].

Step 3. Define fuzzy sets on the universe U. The fuzzy sets:
Ai = fai(ur)/ur + fai(ug)/uz + ... + fai(up)/up (7

could be defined using some linguistic values such as A; =
(not many), Ay = (not too many), As = (many), A4 = (many
many), As = (very many), Ag = (too many), A7 = (too many
many). In this paper the fuzzy sets are defined according to:

Ay ={u1/1,u2/0.5, ..., tp—1/0,u,/0}
AQ = {U1/0.5,UQ/1, ...,un_l/O,un/O}

Ap ={u1/0,u2/0,...;u,-1/0.5,u,/1} (8)



Step 4. Fuzzify historical data. In some FTS methods the
assign values of the fuzzy sets is subjective. In this paper a
modular function was adopted as presented in:

1.0, if D(m)>U(1,n)A
D(m) <U(2,n);
0.9, if (A > 0.50Au)A
(A <0.75Au);
0.8, if (A > 0.75Au)A
(A < 1.00Aw);
0.7, if (A > 1.00Au)A
(A < 1.25Au);
0.6, if (A>1.25Au)A
(A < 1.50Au);
falm,n) =< 0.5, if (A>1.50Au)A 9)
(A < 1.75Au);
04, if (A > L75Au)A
(A < 2.00Au);
0.3, if (A > 2.00Au)A
(A <2.25Au);
0.2, if (A>2.25Au)A
(A < 2.50Au);
0.1, if (A > 250Au)A
(A < 2.75Au);
0.0, if (A>2.75Au).

to automate this process. This function uses the n-interval
length of U:

Au=U(2,1) - U(1,1) (10)

and the distance between the m-actual data, D(m), with
respect to the mean of the n-interval length.

Au

- — 11
5 (11)
Step 5. Establishing fuzzy logical relationships (FLR). This

process find the sequence of fuzzy sets that is equal to 1, i.e.,
Ai =1:

A = |D(m)

A1—>A1
A14)A1

A6—>A6

A6 — A7 (12)

Step 6. Forecast all the right hand side of the fuzzy data in
FLR according to:

F(i) = [My, Mo, ..
with the weighted matrix defined by (14), (15) and (16).
W(t) = [wy, Wy, ..., wy]

13)

. M7] X [U}hwg, ...,w,;]T

(14)

15)

k
> w, =1 (16)
h=1
where:
i =~k: total number of fuzzy sets in the right hand side of FLR;
M: midpoint of the n-intervals in the universe of discourse U
w: calculated weights for each midpoint Mi’s.

B. Exponential FTS Algorithm

The Exponential FTS algorithm makes some corrections in
the weights calculated in Yu FTS algorithm (15) and (16).
The steps to implement the exponential FTS are the same that
Yu FTS with some differences when calculate the weights
(17). The adjustment of parameter ¢ makes great difference
in fuzzy forecast, usually the value c is set as 1.2.

Step 1. Implement the steps from 1 to 5 according Yu FTS
algorithm.

Step 2. Forecast all the right hand side of the fuzzy data in
FLR according to (13) with the weighted matrix defined by
(14) and:

1 c c? ck=1
Wt) = |—— —— (17)
Do Wk D wh Do Wk DL wh
h=1 h=1 h=1 h=1
where:
i =k: total number of fuzzy sets in the right hand side of FLR;
c: weight constant with ¢ > 1.2 < i < k;
M: midpoint of the n-intervals in the universe of discourse U;
W: calculated weights for each midpoint Mi’s.

C. Transformation FTS Algorithm

Transformation FTS algorithm is commonly used to remove
noisy effects of data and therefore increases the forecastability
of time series [15]. The Box Cox transformation is applied
to the actual data series. The steps to implement the
Transformation FTS algorithm are presented as follow:

Step 1. Apply Box Cox transformation to the actual data
series and then obtain the \ parameter and Z vector:

Z}—1

N < A#£0
zZp = (18)
hl(Zt) A=0
Step 2. Calculate dg vector according to:
Z)\ _ Z)\
dy = 5= (19)
A

Step 3. Calculate A, as a difference of the third and first
quartile, according to:

Ay =0Q3— Q1 (20)



Step 4. Calculate parameter | according to:
I 2 x Ay
nl/3

Step 5. Obtain the estimated vector dg using Yu FTS
algorithm.

2y

dAS = [Ml,MQ, ,Mz] X [wl,w27...7wi]T (22)

Step 6. Calculate the estimated yg parameter according to:

1
Us = = (23)
1—dg
Step 7. Apply:
25 = §s 2} (24)
to the vector Z obtained in (18).
Step 8. Obtain the forecast data series according to:
. . 1/A
F=27g= (Azg + 1) (25)

D. High-Order FTS Algorithm

In some cases the data to be forecast are not related to the
last state, thus they are related to some sequence of former
states. According [15] the sequence of former states can be
done by some of these options below:

o by expert knowledge;

o by data discovery;

¢ by applying try and error procedure;

e by ACF (Auto-correlation function) analyzing;
« by some evolutionary algorithm.

High-Order FTS are very usefull for seasonal and
multiseasonal series. The steps to implement High-Order FTS
algorithm are related below:

Step 1. Implement the steps from 1 to 4 according Yu FTS
algorithm.

Step 2. Choose the sequence of former states according

strategies presented before. For example:
F(t—2),F(t—1)— F(t) (26)

presents the states according example in [15].

Step 3. Establishing fuzzy logical relationships (FLR) ac-
cording the former states. In:
Al, A1 — A1
Al, A1 — AQ

Aﬁ, A7 — A7

A7, A7 — A6 (27)

the FLR are composed of two former states [15].

Step 4. Eliminate the recurrence of fuzzy logical relationship
(27) and defines the fuzzy logical relationship group (FLRG)
for the former states:

A17A1 — AlaAQ
Al,AQ — A3

Aﬁ,Aﬁ — A7

A7, A7 — Ag (28)

Step 5. Forecast all the right hand side of the fuzzy data in
FLR according to:

M;
F(i) =22

. (29)
i
V. RESULTS
The wind turbine times-to-failure data, analyzed by both
reliability and FTS algorithms methods, was obtained from
measurements realized in a large onshore wind farm located at
Brazil. The failure model for electric motor fan was obtained
using maximum likelihood method and Weibull distribution
function, the estimated parameters were S = 1.70 and n =
702, 3 days. These distribution parameters values were also
used to generate 30 points for the time series forecasting.
Figure 2 presents the fuzzy time series which best forecast the
times-to-failure data, where blue dots represents the generated
sample and red dots the forecast values. Figure 3 compares
best FTS forecast with reliability evaluation method used to
predict times-to-failure data.
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Fig. 2. Yu FTS forecast for times-to-failure.

The evaluation methods for fuzzy time series applied where
obtained using forecast errors measures, i.e, MAPE - Mean



Historical and Probability of Failure Forecast for Times-to-Failure (TTF)
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Fig. 3. Probability of failure (PoF) comparisons between FTS and reliability
predictions.

Absolute Percentage Error (referred as mean error), MAD -
Mean Absolute Deviation, MSE - Mean Squared Error and
RMSE - Root Mean Squared Error. For all these methods the
smaller value are the better method that fits the model.

FTS Algorithms Comparisons

The mean error for times-to-failure forecasting using Yu and
Exponential were 13%. The Transformation FTS algorithm
implemented obtain a mean error of 16% and for High-Order
FTS algorithm, mean error was 17%. The sequence of former
states used in High-Order FTS was chosen according to:

F(t—3),F(t—2),F(t—1) — F(t) (30)

Table I presents the summary of statistics estimated errors
comparisons between fuzzy forecast methods.

TABLE I
FTS FORECAST ERROR COMPARISON
Forecast Method MAPE MAD MSE RMSE
Yu FTS 13 40 2.40%103 49
Exponential FTS 13 40 2.40x103 49
Transformation FTS 16 113 23.3x103 153
High-Order FTS 17 60  820x103 91

VI. CONCLUSION

From the results obtained in section V it is possible to verify
that both Yu and Exponential FTS were the best fuzzy time
series method to fit times-to-failure of a wind turbine electric
motor fan. It also can be viewed in Figure 3 that reliability
evaluation fails to predict times-to-failure when the probability
(PoF) are less than 70%. The use of FTS algorithms instead
of standard reliability evaluation to predict times-to-failure has

the advantages that mathematical and statistics background
necessary in FTS is much more simple and easy to under-
stand and implement than the standard reliability evaluation
prediction methods.
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