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Abstract: In this work, q-Weibull distribution is applied to analyze the reliability of a sugarcane harvester 

used in a process of mechanized cutting of sugarcane, based on historical time-to-failure data. It is compared 

to the original three-parameter Weibull distribution, highlighting the advantages of this model. The parameters 

were estimated by the least square estimation (LSE) method. The fitting results of the q-Weibull distribution 

provided a coefficient of determination (𝑅2) higher than that value obtained with Weibull distribution. The 

better performance of q-Weibull distribution was also confirmed by visual inspection once it exhibits a 

nonmonotonic failure rate, which is impossible to obtain with the three-parameter Weibull distribution. Results 

also show that q-Weibull performs better than the three-parameter Weibull distribution and is able to represent 

the entire life cycle more accurately. 
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1. INTRODUCTION 
 

One of the main tasks of reliability engineering is to keep industrial plants, equipment, or simple 

components functioning properly. A deep assessment for understanding failure prevention is related to 

quantitative models that demand a systematic statistical approach to the description of the failure rate of 

components, equipment and systems. The choice and application of a model that accurately characterizes the 

failure become the aim and the most important step in reliability analysis [1]. The three-parameter Weibull 

distribution is one of the most common distributions applied in reliability analysis and has been widely used 

in many industrial applications, such as automotive, aerospace, military, nuclear power, electronics, electrical 

power, advertising, dental research and the mortality of mailing lists [2-4]. This Weibull distribution is also 

indicated to evaluate the reliability of components that suffer wear-out failure and to determine the optimum 

replacement or repair interval [5]. 

The survival probability density function (pdf) at time 𝑡 described by Weibull in Ref. [2], can be written 

as: 

 𝑓(𝑡) =  
𝛽

𝜂 − 𝑡0
 (

𝑡 −  𝑡0

𝜂 − 𝑡0
)

𝛽−1

exp [− (
𝑡 − 𝑡0

𝜂 − 𝑡0
)

𝛽

] , (1) 

where 𝑡 is the time-to-failure or lifetime, 𝛽 is the shape parameter, 𝜂 − 𝑡0 (known as 𝜃) is the scale parameter 

and 𝑡0 is the location or minimum life parameter, with 𝛽 > 0, 𝜂 − 𝑡0 > 0 and 𝑡 ≥ 𝑡0. When 𝛽 = 1, the 

exponential distribution is obtained. The characteristic life parameter 𝜂 is defined as the time value life 𝑡 = 𝜂 

at which 63,2% of units will fail. 𝜂 and 𝑡0 have the same unit of time 𝑡. 𝛽 is dimensionless. 

Despite the simplicity and the numerous applications, the Weibull distribution has some limitations. The 

q-Weibull distribution is a four-parameter generalization which interpolates the q-exponential and Weibull 

ones, and has been studied and applied in some areas of engineering, presenting a better performance than the 

usual three-parameter Weibull distribution. One of the first applications of the q-Weibull distribution in 

reliability analysis, i.e. modeling the time-to-failure due to the dielectric rupture of oxides in electronic devices, 



Artigo Completo nº 20170522234113 

Congresso ABRISCO 2017 2 

 

provided a better quality fit than that obtained by Weibull [6]. A similar study of the fit of time-to-failure data 

from a natural gas recovery plant was performed by Sartori et al. [7] and also showed the superiority of q-

Weibull due to the additional 𝑞 parameter. In a comparative study between the q-exponential and Weibull 

distributions for highway length, it was found that the q-exponential and Weibull distributions do not give a 

satisfactory adjustment, being necessary to employ the q-Weibull distribution [8]. 

In addition, the usual Weibull model is not able to represent the entire life cycle of an asset with a single 

function, since it only expresses monotonous failure rates. Mathematical properties of the q-Weibull model 

which were explored and led up by Assis, Borges and Melo [9], opened a new field of research that had not 

been covered earlier in the literature. They showed that the q-Weibull model can also display, besides the 

monotonic curves, nonmonotonic failure rate form: the well-known bathtub curve (U-shaped) and the 

unimodal shape. Each type of failure rate behavior has a specific range of value of shape parameters 𝑞 and 𝛽. 

They continued with this study and showed that for modeling bathtub curve, the original Weibull model 

requires three functions, one for each failure rate segment decreasing, constant and increasing, respectively 

represented by the values of the shape parameter 𝛽 < 1, 𝛽 = 1 and 𝛽 > 1, and confirmed again that the 

generalized q-Weibull is capable to model in addition to the monotonous failure rates, the other two types of 

failure rate (bathtub curve and unimodal), both being reproduced with a single set of parameters [1]. They also 

compared four models for the description of lifetime of a robotic welding station used in a manufacturing 

process (the exponential, the Weibull, the q-exponential and the q-Weibull). Two of these models are 

generalized versions of the usual ones. The results show that the q-Weibull model is more flexible to describe 

shapes of failure rate curves than the other models. Other generalizations and modifications of the Weibull 

distribution can be found in the literature (see Ref. [10, 11]). 

It is important to note that the q-Weibull distribution has been connected with the dimensionless entropic 

parameter q in the context of Tsallis statistics. The Tsallis pioneering paper has introduced a generalization of 

the concept of entropy [12]: 

 𝑆𝑞 = 𝑘
1 − ∑ 𝑝𝑖

𝑞𝑊
𝑖=1

𝑞 − 1
 (𝑞 ∈ ℝ), (2) 

where 𝑘 is a conventional positive constant, 𝑊 is the total number of possible configurations and 𝑝𝑖 is the 

associated probabilities. At the limit 𝑞 → 1, the Boltzmann-Gibbs statistics is recovered 𝑆1 = −𝑘 ∑ 𝑝𝑖 ln 𝑝𝑖
𝑊
𝑖=1 . 

For a recent review see Ref. [13]. 

In order to apply the q-Weibull distribution in reliability modeling, some others important mathematical 

functions which were generalized in the context of nonextensive statistical mechanics, need to be considered. 

Tsallis also defined the q-logarithm and its inverse, the q-exponential [14]: 

 ln𝑞(𝑥) =
𝑥1−𝑞 − 1

1 − 𝑞
 (𝑥 > 0), (3) 

 
exp𝑞(𝑥) = {

[1 + (1 − 𝑞)𝑥](1 (1−𝑞))⁄ , if  (1 + (1 − 𝑞)𝑥) > 0
0,                             otherwise,

 
(4) 

in which 𝑥, 𝑞 ∈ ℝ. At the limit 𝑞 → 1, these functions recover the usual logarithm ln1(𝑥) = ln(𝑥) and 

exponential exp1(𝑥) = exp (𝑥). The cut off condition presented in Equation (4) avoid negative and complex 

numbers, in order to achieve the probabilities. The q-exponential change from exponential behavior (with 
𝑞 = 1) for asymptotic power law with large 𝑥 and 𝑞 > 1 presenting stretched tail. More details about these 

mathematical operations can be viewed in Ref. [8, 9]. 

The purpose of this paper is to apply the q-Weibull distribution to analyze the reliability of a sugarcane 

harvester currently in operation, based on historical time-to-failure data. Previous papers gave fundamentals 

support to recall q-Weibull model and to analyze some details that are important to reliability analysis, such 

as Ref. [1, 6-9, 12, 14]. 

In the following section, we present the generalized q-Weibull distribution with mathematical equations 

and the parameter estimation. The application of this distribution in a sugarcane harvester is considered in 

Section 3. The last section is dedicated to our conclusions. 
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2. q-WEIBULL DISTRIBUTION 
 

Using the definition of the q-exponential for the generalization of the Weibull distribution (Equation 

(1)), the probability density function of q-Weibull, with 𝑡 ≥ 𝑡0, can be written as (see Ref. [6] for 

interpretation): 

 𝑓𝑞(𝑡) = (2 − 𝑞)
𝛽

𝜂 − 𝑡0
 (

𝑡 −  𝑡0

𝜂 − 𝑡0
)

𝛽−1

exp𝑞 [− (
𝑡 −  𝑡0

𝜂 − 𝑡0
)

𝛽

] . (5) 

The constraint 𝑞 < 2 and the factor (2 − 𝑞) are necessary to ensure the normalization of 𝑓𝑞(𝑡). 

The following q-Weibull expressions was discussed and applied in Ref. [9]. The reliability function is 

defined by: 

 𝑅𝑞(𝑡) =  {exp𝑞  [− (
𝑡 − 𝑡0

𝜂 − 𝑡0
)

𝛽

]}

2−𝑞

 . (6) 

The probability of failure 𝐹𝑞(𝑡) defines the cumulative fraction of parts that will fail by a time 𝑡: 

 𝐹𝑞(𝑡) = 1 −  𝑅𝑞(𝑡) = 1 − {exp𝑞  [− (
𝑡 −  𝑡0

𝜂 − 𝑡0
)

𝛽

]}

2−𝑞

 . (7) 

And so the failure rate function is: 

 ℎ𝑞(𝑡) =  
𝑓𝑞 (𝑡)

𝑅𝑞(𝑡)
=  

(2 − 𝑞)𝛽

𝜂 − 𝑡0
  (

𝑡 − 𝑡0

𝜂 − 𝑡0
)

𝛽−1

 {exp𝑞  [− (
𝑡 −  𝑡0

𝜂 − 𝑡0
)

𝛽

]}

𝑞−1

 . (8) 

The failure rate becomes the original Weibull when 𝑞 = 1: 

 ℎ(𝑡) =  
𝛽

𝜂 − 𝑡0
  (

𝑡 −  𝑡0

𝜂 − 𝑡0
)

𝛽−1

 . (9) 

The failure rate behavior is one of the main discussion we analyze here. The difference between Weibull 

and q-Weibull can be seen by comparing Equations (8) and (9) and the visual shape of each model is being 

shown in Figure 1, depending on the values of the shape parameters 𝛽 and 𝑞. Table 1 shows the possibilities 

of these behaviors. Although not shown in Figure 1, note that the function also reproduces the constant failure 

rate for 𝑞 = 1 and 𝛽 = 1. 

 

Figure 1 - Four different types of behavior of the failure rate function. 

Source: Assis et al. (2013) 
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Table 1 - Behavior of the q-Weibull failure rate according to the values of the parameters 𝑞 and 𝛽 
 0 < 𝛽 < 1 𝛽 = 1 𝛽 > 1 

𝑞 < 1 Bathtub Curve Monotonous increasing Monotonous increasing 

𝑞 = 1 Monotonous decreasing Constant Monotonous increasing 

1 < 𝑞 < 2 Monotonous decreasing Monotonous decreasing Unimodal 

Source: Assis et al. (2013) 

 

For the estimation of parameters, the sample data which are time-to-failure must be in ascending order. 

The median rank is the most popular approach of estimating the Y-axis plotting positions and regression 

analysis to fit the line. Weibull employed mean ranks in his paper but later, Johnson became recognized 

suggestions to use median ranks by means of Bernard`s approximation, an adjusted median rank [2, 15]. Some 

examples using Bernard’s approximation for the median rank were taken and demonstrated that is sufficiently 

accurate for plotting and estimating the parameters. It is also easier than interpolating in the tables for the 

adjusted median ranks that are not an integer value [1, 4, 7, 9]. So, an estimative of unreliability can be done: 

 𝐹̂𝑖 =
𝑖 − 0,3

𝑛 + 0,4
 , (10) 

where 𝑖 is the failure order number which ranges from 1 to 𝑛 and 𝑛 is the sample size. Note that if two data 

points have the same time to failure on the X-axis, they are plotted at different median rank values on the 

Y-axis, each point gets its own individual vertical location. For each sampling time 𝑡𝑖, we have: 

 𝑥𝑖 = ln(𝑡𝑖 − 𝑡0), (11) 

 𝑦𝑖 = ln[−ln𝑞′(1 − 𝐹𝑖̂)] . (12) 

Equation (7) can be described as 𝑦 = 𝛽𝑥 + 𝑏, placing the sample data in a straight line by the change of 

variables 𝑥𝑖 and 𝑦𝑖, represented by Equations (11) and (12) and 𝑏 = −𝛽 ln[(𝜂 − 𝑡0) (2 − 𝑞)1 𝛽⁄⁄ ] (see Ref. 

[1, 6] for details). Realize that there is a q-logarithm in 𝑦𝑖 expression, denominated 𝑞′ = 1 (2 − 𝑞)⁄ , so the 

common procedure to calculate 𝑦𝑖 for q-Weibull distribution must be changed, considering the generalized 

mathematical functions in the context of nonextensiveness mentioned above in Equations (3) and (4). We 

obtain the graph of ln[−ln𝑞′(1 − 𝐹̂)] versus ln (𝑡 − 𝑡0) since ln[−ln𝑞′(1 − 𝐹𝑞(𝑡))] = 𝛽 ln(𝑡 − 𝑡0) −

𝛽ln[(𝜂 − 𝑡0) (2 − 𝑞)1 𝛽⁄⁄ ], as described in Ref. [8]. 

The parameters of q-Weibull distribution (𝛽, 𝑡0, 𝜂 and 𝑞) are estimated via the least squares estimation 

(LSE) method, maximizing the coefficient of determination, searching the parameters 𝑞 and 𝑡0 that return the 

maximum value of 𝑅2, which represents the quality of the fit [7]: 

 𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 , (13) 

where the adjustment curve of the model 𝑦̂𝑖 is ln[−ln𝑞′(1 − 𝐹𝑞(𝑡𝑖))] and the mean 𝑦̅ is ∑ 𝑦𝑖 𝑛⁄ . The constraints 

are 𝛽 > 0, 𝜂 > 𝑡0, 𝜃 > 0, 𝑡0 < 𝑡𝑚𝑖𝑛 and 𝑞 < 2. 𝑡𝑚𝑖𝑛 is the lowest sample time. Note that the parameters of 

the original Weibull distribution can be obtained by imposing a constraint 𝑞 = 1 on the four-parameter 

q-Weibull distribution. Equation (13) return 𝑅2 ≤ 1, including negative values. 

Other methods of parameter estimation were proposed. The maximum likelihood estimation (MLE) 

method was used in a detailed study by Jose and Naik [16] and showed the properties of the q-Weibull 

distribution in applications to a data on cancer remission times. The results showed that the q-Weibull model 

has a better fit than Weibull, but they claimed the difficult to estimate the parameters due to the nonlinear set 

of equations. Other attempts with the MLE method were also performed and showed some difficulties with 

original Weibull distribution. It was cleared that the calculation is difficult and iterative for the Weibull 

parameters and so convergence may not always occur. It was also shown that it is satisfactory particularly for 

large samples over 500 failures [4]. However, another way of estimating parameters has been presented using 

also the likelihood function, despite the difficulty to converge and it was applied with the fresh generalized 
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q-Weibull model discussed here. To overcome this problem, Xu et al. [17] proposed recently an adaptive 

hybrid artificial bee colony algorithm denominated AHABC. The parameter estimation procedure was applied 

to real reliability failure data and showed its effectiveness by producing a more accurate convergence. 

Despite the good results presented by Xu et al. [17] in dealing with non-trivial parameter estimation due 

to the intricate system of nonlinear equations, showing that the algorithm efficiently finds the optimal solution 

for the q-Weibull MLE problem, the maximum likelihood method was not used in our study. 

 

3. APPLICATION TO A SUGARCANE HARVESTER 
 

In this section, we apply the q-Weibull distribution in comparison to the three-parameter Weibull model, 

to analyze the time-to-failure data of a sugarcane harvester from the historic industrial database. This machine 

has seven systems previously hierarchized: drive, feeding, straw extraction, transport of sugarcane, propulsion, 

hydraulic and electric. Particularly, we analyze the systems of the transport of sugarcane and the propulsion, 

in which have respectively, 71 and 43 operation times, in hours. There is no censored data in the samples. All 

values of the samples were used to estimate the unreliability, according to the  𝑥𝑖 and 𝑦𝑖 variables and median 

ranks. 

Table 2 shows the fitting parameters for each system and the coefficient of determination 𝑅2. 

Figures 2 and 4 show the usefulness of the q-Weibull distribution in comparison with usual Weibull 

model (𝑞 = 1), when the models fit the points in a straight line, in a graph ln[−ln𝑞′(1 − 𝐹̂)] versus ln (𝑡 − 𝑡0). 

In a qualitative inspection, note that q-Weibull fits better the data, especially in the tails in both systems 

analyzed. Thus, the q-Weibull presented a superior coefficient of determination. 

 

Table 2 - Fitting results 

System Model 𝛽 𝜂 (hour) 𝑡0 (hour) 𝜃 (hour) 𝑞 𝑅2 

Transport of 

sugarcane 

q-Weibull 0.59 9924.22 1.36 9922.86 -6.43 0.9847 

Weibull 0.85 112.15 0.46 111.69 1.00 0.9686 

Propulsion 
q-Weibull 1.67 204.60 -5.53 210.13 1.36 0.9860 

Weibull 1.23 344.24 7.17 337.07 1.00 0.9792 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - (a) Graph of ln[−ln𝑞′(1 − 𝐹̂)] versus ln (𝑡 − 𝑡0) of the transport of sugarcane system lifetime. 

Parameter 𝑞 = −6.43 and square correlation coefficient is 𝑅2 = 0.9847; (b) the same graph, data and 

system with parameter 𝑞 = 1 and square correlation coefficient 𝑅2 = 0.9686. 

 

Figures 3 and 5 show the reliability and failure rate curves for the two systems. Panel (a) shows another 

way to evaluate the fitness of the models, comparing the reliability curves with the experimental data (circles). 

It can be noted again that the q-Weibull is able to fit better all the range of the data, while the original Weibull 

model constantly diverges from experimental data in both cases, especially in large time-to-failure like shown 

in Figures 2 and 4. Notice that, as the lifetime increases, the curves of the two distributions move away and 

q-Weibull gets closer to the samples. This characteristic makes this model most appropriate for these sample 

(a) (b) 
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data. The experimental data are the unreliability estimates 𝐹̂𝑖 (Equation 10) versus time-to-failure in log-log 

plot of reliability curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - (a) Reliability curves and experimental data; (b) failure rate curves; both plots show 

time-to-failure of the transport of sugarcane system on the X-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - (a) Graph of ln[−ln𝑞′(1 − 𝐹̂)] versus ln (𝑡 − 𝑡0) of the propulsion system lifetime. Parameter 

𝑞 = 1.36 and square correlation coefficient is 𝑅2 = 0.9860; (b) the same graph, data and system with 

parameter 𝑞 = 1 and square correlation coefficient 𝑅2 = 0.9792. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - (a) Reliability curves and experimental data; (b) failure rate curves; both plots show 

time-to-failure of the propulsion system on the X-axis. 

 

(a) (b) 

(a) (b) 

(a) (b) 
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The shape of the failure rate (life cycle) of the q-Weibull is obtained through Equation (8), while to 

obtain the original Weibull failure rate form, simply making 𝑞 = 1 (panel (b)). The examples show different 

behaviors of the failure rate ℎ𝑞(𝑡) including nonmonotonic forms, according to the values of the shape 

parameters 𝑞 and 𝛽. The first work recorded in the literature that reached such a representation of the bathtub 

curve and unimodal shape with the q-Weibull distribution is found in Ref. [9], in which it provided resources 

for the results presented here. Table 3 shows the behavior of failure rate for each system analyzed. Another 

possibilities combinations of parameters and their related behaviors were shown in Table 1. 

 

Table 3 - Behavior of q-Weibull failure rate results for each system according to the range of the shape 

parameters 𝑞 and 𝛽  

System Model 𝑞 range 𝛽 range Failure rate behavior 

Transport of 

sugarcane 

q-Weibull 𝑞 < 1 0 < 𝛽 < 1 Bathtub shape 

Weibull 𝑞 = 1 0 < 𝛽 < 1 Monotonous decreasing 

Propulsion 
q-Weibull 1 < 𝑞 < 2 𝛽 > 1 Unimodal 

Weibull 𝑞 = 1 𝛽 > 1 Monotonous increasing 

 

4. CONCLUSIONS 
 

In several application areas of reliability engineering, the Weibull and other generalized models for 

lifetimes have an important role to describe many frequency distributions. In this work, we compare the 

classical three-parameter Weibull distribution with the generalized four-parameter q-Weibull distribution. In 

order to investigate the benefits of an additional parameter, both models were applied to describe life data of 

a sugarcane harvester, in a specific mechanized cane cutting process. 

Bernard's approximation of the median ranks was used as well as the least squares estimation (LSE) 

method to estimate the parameters of the models, maximizing the coefficient of determination 𝑅2. The results 

show that the q-Weibull distribution performs better than the classical three-parameter Weibull, for the two 

examples addressed (the systems of transport of sugarcane and propulsion). The q-Weibull model fits the 

sample data better than the Weibull model and presents, therefore, an improvement to describe events, since 

the prediction of failures can be obtained with greater precision. Such an improvement was expected due to 

the additional parameter 𝑞, but it is important to also note the ability of the q-Weibull model to describe other 

two nonmonotonic failure rate behaviors, which have been shown in the examples here: the bathtub curve (or 

U-shaped) and the unimodal shape, in which the original Weibull model is unable to describe, once is 

monotonically decreasing, constant or monotonically increasing, depending on the value of parameter 𝛽. These 

three phases are also known as infant mortality, useful life, and wear out. As it can be seen in Assis et al. [1], 

for bathtub curve modeling, original Weibull model requires three functions, one for each failure rate segment 

decreasing, constant and increasing, respectively represented by the range of the 𝛽 shape parameter 0 < 𝛽 < 1, 
𝛽 = 1 and 𝛽 > 1. These three functions indeed demand more time and a larger set of parameters, while 

q-Weibull describes nonstop the entire bathtub curve maintaining the same set of four parameter values. 

Since the useful q-Weibull distribution reduces the time for parameter estimation and can reproduce 

continuously the whole life cycle of an item with a variety of failure rate behaviors, its flexibility and accuracy 

in fit will further enhance even more the operational process industry reliability modeling. 
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