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1. INTRODUCTION 

Industrial sectors are facing an increasing demand to produce larger amounts of goods with better quality, which 

normally lead to keep the operating process at maximum requirement. Therefore, unscheduled downtimes bring 

severe problems to the production system and represent unplanned costs. Nevertheless, impacts due to failure could 

be pictured in just inconvenience and setbacks but also can damage the system, injure people and, in extremes cases, 

cause death.  

In this context, condition-based maintenance (CBM), or predictive maintenance, is a decision-making strategy 

using condition monitoring information to optimize the availability of operating plants [1]. CBM enables the early 

detection of faults or failures in order to reduce downtime and operating costs, facilitate proactive responses, and 

improve the productivity as well as reliability, availability, maintainability and safety (RAMS). 

According to [2] , Remaining Useful Life (RUL) is the useful life left at a particular time of operation and is 

typically random and unknown. In fact, RUL is related with several factors, such as the currently degradation status, 

the operation environment and the system function and it must be estimated from available sources of information 

such as condition and health monitoring. CBM technologies are developed and applied to a large variety of 

machines, systems, and processes in the transportation, industrial, and manufacturing sectors. Rotating equipment 

has received special attention due to its critical operating regimes, frequent failure modes and availability of 

measurements (vibration, temperature, etc.) intended to allow detection and isolation of incipient failures [3] . 

Different metrics can be obtained in order to track the degradation of a system and build an accurate relationship 

between the current health condition state and RUL. Many metrics (e.g. vibration, acoustic emission, temperature, 

corrosion) can represent the evolution of degradation, and their analyses are as necessary as arduous [4, 5].  

SVM is a promising algorithm for RUL estimation because it can deal with small training sets and multi-

dimensional data [6]. In particular, SVM has been successfully applied to different fields, e.g. financial, 

environmental, reliability, power systems [7, 8; 9; 10] and is particularly useful when the process or function that 

maps inputs into output is unknown. Many SVM-based methods have been proposed to predict RUL of some key 

components and hybrid methodologies usually improve RUL estimation accuracy and overcome limitations of the 

individual methods [11]. 

The learning model accuracy strongly depends on the quality of the input data. The direct use of the original 

series as the input variables in forecasting model could lead to missing some features or to the consideration of 

irrelevant information (e.g. noise), generating poor predictions. Hence, some techniques can be used as 

preprocessing tools in order to improve data input quality and, consequently, to obtain superior predictions from 

the learning method. 

Among those preprocessing techniques, the Empirical Mode Decomposition (EMD), proposed by [12], 

converts the data in a more suitable form by decomposing the original series into a sum of Intrinsic Mode Functions 

(IMFs). According to [13], EMD is adaptive, empirical, direct and intuitive.  

Wavelets Transform are other well known preprocessing techniques based on time-frequency analysis, 

originally proposed by [14] who introduce filter banks called wavelets function and scaling function. The idea 

behind Wavalets Transform is the same for the Short-Time Fourier Transform [15], but the former presents the 

best frequency/time resolution trade-off, given that windows of various lengths are applied.  
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Due to the challenge to find suitable parameters for SVM, Particle Swarm Optimization (PSO) was used coupled 

with the learning machine to enhance its predictive capacity.  

2. GENERAL OBJECTIVES 

The present work compares EMD-based models and Wavelets-based models coupled with Support Vector 

Machine and Particle Swarm optimization against a model without any preprocessing techniques and investigates 

whether the hybrid methodology actually provides significant gain. It is expected that pre-processing techniques 

could enhance the  

3. THEORETICAL BACKGROUND 

3.1 Rolling Bearings and Vibration Signal  

Rolling bearings are an essential and critical component of rotating machines with its use and study widespread 
inside industrial applications. Normally, the main component considered in a rolling bearing are the outer race, 
the inner race, the ball and the cage. Fault diagnosis of the rolling bearings has been the subject of extensive 
research [16]. This process includes the acquisition of information, feature extraction and condition recognition 
[17].  

Different methods are used for the acquisition of information and may be broadly classified depending on the 
type of measurements: vibration and acoustic, temperature and wear debris analysis [18]. Among these, vibration 
measurements are commonly used in the condition monitoring and diagnosis of the rotating machinery mainly due 
to the easy-to-measure signals and plausible analysis.  

When faults occur in the roller bearing, the vibration signal would be different from the signal under the normal 
state. Localized faults in rolling element bearings produce a series of broadband impulse responses in the 
acceleration signal as the bearing components repeatedly strike the fault. The precise location of the fault 
determines the nature of the impulse response series, and Fig. 1 shows the typical cases [19]. Each element of the 
rolling bearing has its own rotation frequency (i.e. BPFO as BallPass Frequency Outer race, BPFI as BallPass 
Frequency Inner race, FTF as Fundamental Train Frequency – cage – and BSF as Ball Spin Frequency), which 
leads to composed complex signal.  

The quality of prognostics is directly impacted by the quality of the diagnosis values. There are many standard 
vibration-based metrics that are traditionally used for machinery diagnostics, including entropy, root mean square, 
signal amplitude, variance, kurtosis, as well as higher order statistics [20]. 

 
Fig. 1. Signals and envelopes from local faults in rolling element bearings [19] 

 

3.2 Empirical Mode Decomposition 

Starting with the work of [12], a remarkable method to analyze non-linear and non-stationary data series was 
developed and have been used in many types of applications. The main idea is that any data series could be 
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decomposed into a small number of simpler oscillation series, called IMFs. The goal is to obtain IMFs regarding 
data characteristics in the time scale [21].  

Generally, any complex signal can be possibly separated into a small number of IMFs, represented by �����, 
and a trend ����. For a number � of IMFs generated, the original series ���� is expressed as follows:  

���� 	 
��
�

�
��� � 	���� (1) 

Ref. [12] defines an IMF as a function that satisfies two conditions: (1) in the whole data set, the number of 
extrema and the number of zero crossings must either equal or differ at most by one; and (2) at any point, the mean 
value of the envelope defined by the local maxima and the envelope defined by the local minima is zero. Then, 
EMD aims to identify empirically the IMFs from the data series features and decompose it according to its unique 
characteristics in a process called sifting.  

The decomposition is based in the following assumptions: (1) the signal has at least two extrema – one 
maximum and one minimum; (2) the characteristics time scale is defined by the time lapse between the extrema; 
and (3) if the data were totally devoid of extrema but contained only inflection points, then it can be differentiated 
once or more times to reveal the extrema [12]. The sifting goal is to remove riding waves, so as to make the wave 
profile more symmetric. The sifting process can be described in the following steps: 

1. Identify all local extrema (maximum and minimum) of the series ����; 
2. Connect all the local extrema with a cubic spline line to create the upper and lower envelopes, �� , ��, respectively; 

3. Calculate the envelope mean ���� 	 ��� � ���/2; 

4. Obtain ���� 	 ���� � ����, candidate to be an IMF; 

5. Verify if ���� satisfies both conditions that define an IMF. If it satisfies, an IMF was generated with the residue ���� 	
���� � ���� replacing the initial series ����. Otherwise, ���� would be the new series ���� and return to step 1. 

6. Once the step 5 is achieved and an IMF is generated, save ����� 	 ���� as the �-th IMF. Then, a series residue ���� 	
���� � ����� becomes the new series ���� and a new loop starts in step 1.  

At the end of the sifting process, a number of IMFs are generated plus a final residue ����. Those number of 
IMFs generated may vary once it depends on the intrinsic characteristics of the series ����. The sifting process 
should be applied cautiously, once carrying the process to an extreme could cause the IMF to have no physical 
sense of both amplitude and frequency modulations. Thus, a stop criterion for the sifting process has to be 
determined, which can be accomplished by limiting the standard deviation value, computed from two consecutive 
siftings. In practice, the number of IMFs created is less than 10.  

Generally, ����� should contain the finest scale or the shortest period component of the signal. We can separate 
����� from the rest of the data by 

���� � ����� 	 ����� (2) 

Since the residue �� still contains information of longer period components (small frequencies), it is treated as 

the new data and it is subjected to the same sifting process as described above. This procedure can be repeated on 

all the subsequent ��’s, and the result is 

�� � �� 	 ��,⋯ , ���� � �� 	 �� (3) 

Finally, the series could be presented as:  

���� 	
��
�

���
� �� (4) 

Thus, original series ���� is decomposed into a number � of IMFs and a residue ��. 

3.3 Wavelets Transform 

A widespread technique applied in the field of signal analysis, the wavelet transform was first proposed by 

[14]. The representation of the process occurs by an infinite series expansion of dilated/contracted and translated 

versions of a mother wavelet, each multiplied by an appropriate coefficient. In practical applications, it is possible 

to use different well-known wavelet transforms for distinct purposes and its choice depends on the specific signal 

characteristics. 
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Wavelet transform can be considered as a mathematical tool that converts a signal in time domain into a 

different form [22]. The Continuous Wavelet Transform (CWT) of a function ���� is defined as the integral 

transform: 

��� , �, !	� 	 1
√ $ ��%�!& '% � �

 ()%			
*

�*
 (5) 

In the expression,   is a scale parameter, � is a location parameter and !&+,,�%� represents the complex conjugate 

of !+,,�%�, a family of wavelet functions. There are different examples of wavelets defined for the continuous 

wavelet transforms, such as the Mexican Hat wavelet, Meyer wavelet and Shannon wavelet.  

Reference [23] argues that wavelet analysis decomposes a signal into two parts, called approximations and 

details. Approximations consist of the high scale low frequency components, while details consist of the low scale 

high frequency components. While approximations offer general information of a signal, details offer detailed 

information of a hidden pattern in the signal.  

Ingrid Daubechies popularized wavelets with her work in [24], allowing more liberty in the choice of the basis 

wavelet functions at a little expense of some redundancy, and is credited with the development of the wavelet from 

continuous to discrete signal analysis. In the discrete wavelet formalism (DWT), the scale λ and the time � are 

discretized as following: 

 	  -.,								� 	 	/ -.�- (6) 

where � and / are integers. The continuous wavelet function !+,,�%� in Eq. (5) becomes the discrete wavelets 

given by: 

!+,,�%� 	 	 -
�.�!� -�.% � /�-� (7) 

The discretization of the scale and time parameters leads to the discrete wavelet transform, defined as: 

����, /, !	� 	 1
0 -.

$ ��%�!&� -�.%
*

�*
� /�-�)%	 

(8) 

Many discrete functions can be used as mother wavelets, such as Haar Wavelet, Legendre Wavelet and Symlet. 

A popular wavelet used in DWT is the Daubechies. Daubechies wavelets are not defined in terms of the resulting 

scaling and wavelet functions; in fact, they cannot be written in closed form. However, due to its successful and 

widespread applications, Daubechies wavelets were used in this work. 

3.4 Support Vector Machine and Particle SwarmOptimization 

Support Vector Machine (SVM) is a supervised learning method aiming to map input-output from a dataset 

called training data 1 	 2���, 3��, … ��., 3.�5 [25]. The objective is to find the function 6��� with the smallest 

penalization with respect to the deviation from the real data and, at the same time, as flat as possible.  

SVM was firstly proposed by Vladimir Vapnik based on the principle of the Structural Risk Minimization and 

has its concepts built on the Statistical Learning Theory [26]. The problem could be seen as follows: there exist a 

mapping function 3 	 6���, unknown, of real values and, possibly, non-linear between an input vector 7 and an 

output scalar 3 and the only available information is the data 1, used in the learning process, with 6��� as solution. 

This means to solve a convex and quadratic optimization problem with the Karush-Kuhn-Tucker (KKT) conditions 

as necessary and sufficient to guarantee a global optimum. The goal is not to look for the perfect alignment between 

the function  6��� and 1, but the best representation for the mapping. Furthermore, it is not desirable the strict 

alignment, once a trade-off have to be made between the data fitness and the generalization ability to predict new 

data. The equation of the regression hyperplane is: 

6	�7� 		 	897	 � 	: (9) 

with 7 expressing the input data and 89 and : the coefficients to be determined. They are estimated from the 

follow regularized risk function:  

;�<� 	 	< 1
�	
!=�3� , 6�� � 1

2
.

��-
898 (10) 
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and 

!=�3� , 6�� 	 >|3� � 6�| � @												�6			|3� � 6�| A @				
					0																											othewise  (11) 

where 3� is the variable real value (i. e. the original data) and 6� is the estimated value to the same variable on the 

same time. Equation (11) is known as the Vapnik’s @	-insensitive loss function that implies the non-penalization 

when the points are inside de tube with radius @. For calculus convenience, J� is defined when the data is above 

the tube and J�∗ when the data is below the tube, and they represent slack variables.  

Hence, @ measures the performance in the training process and is related to the first term of Equation (11). The 

second term of the same equation is used as a smoothness function, once SVM also aim to get 6��� as flat as 

possible and is also necessary to minimize the term related with the machine’s capacity represented by 898, 

which is the squared norm of w. Ergo, < is a trade-off between the empirical risk and the model’s smoothness, 

with its value defined a priori, as well as the parameter @. The primal problem is defined as: 

minN,O,P,P∗ 	
1
2	8Q8� 	< ∙ 	
�	J� �	J�∗�

.

��S
 (12) 

where � is the number of training points and subject to: 

3� �	8Q7� � 	:	 T @ �	J� (13) 

8Q7� � 	:	 �	3� T @ �	J�∗ (14) 

J� , J�∗ A 0,        i	 1,2,… ,� (15) 

Hence, the corresponding primal Lagrangian function could be determined from the Lagrange multipliers. Also, 

the dual problem can be formulated and, from the KKT conditions, find the global solution, which is also the 

primal solution. The function 6��� is obtained as follows:  

6�7� 		 8-Q7 � 	:	 	 	
�U� � U�∗�
�

���
7�Q7	 � 	: (16) 

where U� and U�∗	 are the Lagrange multipliers. To solve the linear regression, it is necessary  to calculate the 

dot products, 7VQ7� and	7�Q7, and the kernel functions, WX�� , ��Y, could be applied. Hence, it is produced:  

6��, U, U∗� 	 
�U� � U�∗�W��S, ��� � :
�

���
 (17) 

In this paper, the kernel function adopted is the Gaussian Radial Basis Function (RBF), expressed by 

W��� , �S� 	 exp	��\‖�� � �S‖��, where \ is also a model parameter.  

In machine learning, a considerable challenge is to provide the best set of parameters to be used in training 

step, since in principle, those are defined a priori. Therefore, optimizations metaheuristics, such as Ant Colony 

System, Genetic Algorithm and PSO, lead to satisfactory parameters’ values avoiding the problem of set it in an 

erroneous way. In particular, PSO coupled with SVM have been successfully applied in reliability problems in 

[27]; [9]; [28]. 

PSO is a probabilistic optimization heuristic inspired by the social behavior of biological organisms (e.g., birds 

and fishes), specifically on the ability of animal groups to work as a whole in order to find some desirable position. 

This seeking behavior is artificially modeled by PSO, which has been mainly used in the quest for solutions of 

non-linear optimization problems in a real-valued search space [29]. 

The fundamental element of PSO is a particle, which can fly all over the search space toward an optimum by 

using its own information as well as that produced by its neighborhood. For a problem with /-variables, each 

possible solution can be considered as a particle with a position vector of dimension /	and the population of 

particles is defined as swarm [30]. The performance of a particle is determined by its fitness.  

Mathematically, a particle i is characterized by the following three vectors: (1) its current position in the n-

dimensional search space, (2) the best individual position it has held during motion and (3) its velocity. The 

particles move all over the search space in successive iterations driven by update equations. The PSO search stops 

when some criteria are reached.  
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4 METHODOLOGY 

The methodology formulated is presented in Fig. 2 and was applied to a real data set provided by FEMTO-ST 

Institute [31]. The data was used in the IEEE PHM 2012 Data Challenge, focused on the estimation of the RUL 

of bearings and vibration data from rolling bearings were used as input.  

 

Fig. 2. Methodology applied for RUL prediction 

The data sets contain a large amount of observed values and, due to the computational cost, the learning model 

(PSO+SVM) cannot handle such an extensive data, being necessary to reduce the actual amount of data used. The 

reduction was done in two steps: the first step concerned a feature extraction to summarize 2560 points, which 

represent a discrete recording of the vibration signal, into just one point (e. g. mean, kurtosis, highest absolute 

value); the second reduction was sampling these data in specific frequencies depending on which degradation state 

the bearing was. Further details about the data set are exposed in the next section.  

5 APPLICATION EXAMPLE 

Experiments were carried out on a laboratory experimental platform (PRONOSTIA), that enables accelerated 

degradation of bearings under constant and/or variable operating conditions, while gathering online health 

monitoring data (rotating speed, load force, temperature, vibration). Even if the data provided for the challenge 

concerns constant operating conditions for each realized experiment, PRONOSTIA enables to provide data related 

to bearings degraded under varied operating conditions. The main objective is to provide experimental data that 

characterize the degradation of ball bearings along their whole operational life (until their total failure). For further 

information, see [31]. 

For the application, a training set is necessary, from which the machine will learn about the bearing degradation 

behavior and a test set, where the same machine will try to predict correctly the behavior of another bearing that 

is submitted to the same operating conditions. The IEEE PHM Data Challenge provided a set of vibration data 

from a training bearing, called in this paper as Bearing 1. Based on its behavior, estimations for the RUL of a test 

bearing, called Bearing 3, were performed. A comparison among models with EMD, Wavelets Transforms and 

without any preprocessing technique is made to identify what is the benefit of these methods.  

Bearing 1 had 2803 observations in a run-to-failure test. SVM supervised learning method requires both 3, the 

response variable, and 7, the regressor/input variables. In all cases, the response variable was the RUL and the 

regression variables were the vibrations amplitude. In the EMD case, two models were created: one model, where 

each IMF and the Residue were considered as a regressor variable, and other model, where just the Residue was 

the regressor variable; in the Wavelet case, two other models were also created: one model contains each Wavelet 

and the last Scaling function as regressors and the other model considered just the last Scaling function. The last 

model, without EMD or Wavelets as preprocessing techniques, had the signal resulted from the vibration feature 

extraction as regressor.  
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It is not expected that the direct point prediction to be reliable due to the high variability of the data, but the 

trend of all predictions should express the realistic RUL estimation, as seen in Fig. 3 [32]: 

 
Fig. 3. Expected estimated RUL behavior 

 
The data provided has 2803 discrete recordings and, after the feature extraction, process the data with 

PSO+SVM is still computational expensive, once that PSO is a probabilistic algorithm that needs to explore 
through the search space for the best solution. Therefore, the data were divided into four different regions, each 
one representing one degradation phase of the bearing. In order to reduce the data quantity, a data sampling was 
performed in every region with a different frequency, once the more stable the bearing is, the less necessary is 
monitoring. The four regions are shown in Fig. 4. 

 
Fig. 4. The four different regions of degradation 

Estimations of RUL of test Bearing 3 were performed for all data, i.e. every test point until the failure has an 

estimated RUL. As previously mentioned, it is not expected a good point prediction, but the trend should correctly 

express the degradation behavior. Fig. 5 depicts an example (e.g. PSO+SVM model with no preprocessing 

technique) of the applied procedure. Each point has a real RUL and its own prediction. A linear trend is calculated 

from predictions and it is presented as a solid black line, thereby creating a good representation of the real RUL. 

This procedure was performed for the five models under analysis: IMFs + Residue; Residue; Wavelets + Scaling; 

Scaling; no preprocessing. 

 

 
Fig. 5. RUL estimation for complete data case 
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In order to measure the quality of the estimate RUL, we calculate the Absolute Percentage Error (APE), which 
quantifies the distance error from the real RUL and the estimated one. To compare the models, we compute the 
percentage error, dividing the RUL prediction for both models to the real RUL, which, in this case, was 23740 
seconds. Both errors are presented in Table 1 for each tested model. As it can be seen from Table 1, even the worst 
EMD-based model is at least three times better than the others.  

TABLE I.  ERROS FOR ALL TESTED MODELS 

Model Regressors APE 

EMD+PSO+SVM IMFs + 

Residue 

2.54% 

Residue+PSO+SVM Residue 1.45% 

Wavelets+PSO+SVM Wavelets + V4 8.70% 

V4+PSO+SVM V4 15.00% 

PSO+SVM Direct 

Vibration Data 

7.58% 

6 CONCLUSION AND FUTURE WORKS 

This work proposed a comparison between the ability of models using EMD or WT as preprocessing technique 
to a PSO+SVM learning algorithm to predict the RUL of rolling bearings from a vibration signal. Moreover, the 
comparison was applied to a real data set provided for a PHM Challenge competition. Due to the duty of a challenge, 
the data was difficult to analyze and it provided some odd features.  

EMD+PSO+SVM based models (which also includes Residue+PSO+SVM model) presented best performance 
compared with others. Even if, in general, performing PSO+SVM learning algorithm already represents a 
reasonable estimation, apply preprocessing techniques to treat the data could represent a gain in terms of 
performance prediction on estimating the RUL for rolling bearings. Moreover, for the presented examples, EMD 
overcomes Wavelets providing better results.  

For future research, a comparison between Ensemble Empirical Mode Decomposition (EEMD) [33] 
preprocessing could be done, to verify if this approach leads to a better prediction. EEMD tries to solve some 
problems of EMD, such as the high variability in the series extremes and mode mixing. 
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