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Abstract: Most deepwater oil prospection activities are carried out by dynamic positioning rigs. 
Due to the risks of such activities, these rigs are more often subject to emergency disconnections 
and, therefore, the blowout preventer (BOP), which is a safety equipment, must have high reliability 
level. Hence, BOP is used to ensure the safety of well drilling process and become one of the most 
important safety device available, and its reliability becomes even more critical, specifically its kill 
and choke line, which are especially important for well control. Considering the non-homogeneity 
of failure data available from BOP system, the main issue for reliability estimates is based on 
Bayesian inference. Due to the above-mentioned limitation, the present paper will present a 
simplified application considering a Bayesian fault tree approach for a typical BOP kill line failure 
probability. The results showed some advantages of considering a methodological approach that 
make possible to combine different information sources for reliability measures. 
 
1. INTRODUCTION 

 
Most deepwater oil prospection activities are carried out by dynamic positioning (DP) rigs. 

Due to the risk aspects of such activities, these rigs are more often subject to emergency 
disconnections and, therefore, the blowout preventer (BOP) safety equipment requires better 
reliability towards the well's integrity preservation. 

The scope of this article is centered on the BOP used for safety purpose in offshore well 
construction, excluding the injection ones. 

Subsea BOP stack plays an important role in providing safe working conditions for the 
drilling activities in 10,000 ft ultra-deep-water region and its failure can cause catastrophic 
accidents [1]. A typical arrangement of a BOP adapted from [2] is represented in the figure 1. 

As a regulatory requirement of the Brazilian National Petroleum Agency (ANP), under certain 
circumstances, a BOP must be an integral part of solidary barriers assembly and in others it is not. 
According to [3], a well barrier schematic (WBS) represents the union of one or more elements with 
the objective of preventing the unintentional flow of fluids from the formation to the external 
environment and between intervals in the well, considering all the paths possible. 

In [4], a barrier is an envelope of one or several well barrier elements (WBE) preventing 
fluids from flowing unintentionally from the formation into the wellbore, into another formation or 
to the external environment. 

The oil and gas exploration and production operations involve a lot of issues regarding the 
worker’s safety and the environment’s health. It is essential that the risks regarding these operations 
are optimized to a minimum, through the maintenance and control over the pressures and types of 
fluids involved [5]. 
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Figure 1 -Typical arrangement of a BOP set - Adapted from [2] 
 

1.1 BOP Kill Line 
 
One of the main components of the well control system is the kill line, which is a high 

pressure line through which the high density mud is introduced into the well to balance the pressure 
of the hydrostatic column with that of the bottom of the well, after the occurrence of a kick. The 
detection of a kick during drilling operations is performed with the aid of a flow indicator or mud 
volume indicator, which detects an increase in the flow of sludge returning from the well over the 
one being circulated by the pump. Failure of the well control system can lead to an eruption [6]. 

Choke and kill lines are critical during well control operations. Its function is to access the 
well and circulate kick fluids out of the well in a controlled manner. The kill line is generally used 
to pump heavier drilling fluid into the well during well control operations. This line is connected 
directly to the high-power pumps of the drilling rig [7]. 

The kill line is a high-pressure line responsible for connecting the BOP to the pumping 
equipment. It is where drilling fluids with the proper weight are injected into the well during the 
control of a kick, to dampen the well or even "kill" [8]. 

This subsystem should be able to close the well in case of kick or blowout. It is called kick an 
undesirable flow of fluids from the formation into the well, which may turn into a blowout which is 
the uncontrolled flow of the well [6]. 

In conventional overbalanced drilling, a loss of well control occurs when the pressure of 
formation fluids exceeds the pressure exerted by the column of drilling fluid on the bottom of the 
wellbore. Thus, a kick – an undesired rush of formation fluids into the wellbore – occurs. If not 
quickly detected and properly suppressed via kill operations, a kick can give rise to a number of 
outcomes among which a blowout is considered the most unwanted and feared [9]. 

The loss of one of the BOP lines, choke or kill, results in loss of well monitoring. The combat 
is restricted to another active line, considering half (50%) of chance to circulate the well 
successfully. To improve the circulation of a kick and consequently increase the safety of the well, 
it is necessary to use as many side outlets as possible on the BOP stack for the choke and kill lines 
[7]. 

In that regard, this paper aims to present a study specifically about the kill line, one of the 
many aspects involved in the oil well control system. 
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Focusing on the effectiveness of this article as measured by the achievement of the main and 

specific objectives described below, this was organized in seven sections and appendices sequenced 
and interconnected in a manner similar to logic adopted in scientific research. 

The remainder of the article is organized as follows. The research objectives are presented in 
the next section, the background is exposed in section three, the methodology is formulated in 
section four, the description of this research is report in section five, the simplified application of 
the methodology considering a Bayesian net approach for failure modeling allied with Bayesian 
inference for failure parameter to the top event (TE) and results obtained are shown in section six, 
conclusions are stated and commented besides a future work is proposed in section seven. 

 
2. RESEARCH OBJECTIVES 

 
The main objective of this research is to present a simplified application considering a 

Bayesian fault tree approach for failure modeling and estimates for the BOP kill line a posteriori 
failure probability.  

Specific objectives include: 
(i) the modeling of the Kill line FT (Appendix I) via WinBUGS software script(Appendix II); 
(ii) the obtaining of global uncertainty for the BOP failure parameter - kill line, which will be 
represented by the a posteriori probability density function of occurrence of the top event in the 
system of the kill line with DP drilling rig. Based on the a posteriori, one can make decision based 
on its statistical values of percentiles and confidence intervals; 
(iii) the analysis of the probability value of failure of the conventional BOP kill line reported by 
[10] through a comparison with the values obtained in (ii), keeping in mind that there must always 
be a balance between the points of view of safety and the financial viability of the business for an 
oil company to be profitable. 

 
2.1 Research Justification 
 

Given the non-homogeneity of information, i.e., not independent and identically distributed 
(iid) data, as well as its scarcity, the main issue for reliability analysis for BOP systems is the use of 
a Bayesian based framework. 

It contemplates all relevant information and propagates their respective uncertainties to the 
estimation of the top event of interest and therefore becomes an approach that can more effectively 
support the decision making process related to well safety. 
 
3. BACKGROUND 
 
3.1 Fault Tree 
 

The basis of many traditional probabilistic risk analysis (PRA) is event tree and fault tree 
models, which logically relate the occurrence of low-level events to a higher-level event (e.g., an 
initiating event followed by multiple safety system failure events may lead to an undesired 
outcome). The occurrence of initiating events and system failures (or just ‘‘events’’) in the fault 
trees and event trees are modeled probabilistically, and the associated probabilistic models each 
contain one or more parameters, whose values are known only with uncertainty. The application of 
Bayesian methods to estimate these parameters, with associated uncertainty, can uses all available 
information, leading to informed decisions based upon the applicable information at hand [11]. 

Since the Kill line FT (Appendix I) is not a trivial system, in [12] the author claims that 
dynamic situations cannot be modeled by conventional methods such as cut sets. He supposes that 
conventional methods means to calculate a system failure-rate or failure-probability derived from a 
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Boolean function whose terms are the minimal cuts obtained from a fault tree, and the input data are 
the failure rates or failure-probabilities for the basic components. 

Solving a fault tree using conventional (cut set) method approach is helpful only in solving 
trivial systems. More complex and realistic systems would likely result in very complex basic 
events with associated probability expressions that are difficult to handle [12]. 

In the most extreme case, the approach results in a fault tree with exactly one basic event. 
That is precisely what is done when a dynamic fault tree is converted to a Markov chain for 
solution. The solution of the equivalent Markov chain yields the probability expression for the one 
basic event in an equivalent fault tree [12]. 

 
3.2 Bayesian Inference 

 
This technique supports the quantification and estimation of parameters for the basic events 

and the propagation of uncertainties for the top event of the BOP kill line. 
Because Bayesian posterior distributions are true probability statements about unknown 

parameters, they may be easily propagated through complex system models, such as fault trees, 
event trees, and other logic models [13]. 

In [14] the authors mentioned the Bayesian approach that has been applied facilitates 
quantitative updating of generic probabilities of discharge of hazardous substances from 
shipwrecks. 

The approach allows for mathematically correct handling of uncertainties in input data and 
formal integration of expert judgement regarding hazardous activities with available data on the 
intensities of such activities at the wreck. It also improves the potential to make risk estimations in a 
similar and objective way for different wrecks  

Bayesian statistical inference relies upon Bayes’ Theorem to make coherent inferences about 
the plausibility of a hypothesis. Observable data is included in the inference process. In addition, 
other information about the hypothesis is included in the inference. Consequently, in the Bayesian 
inference approach, probability quantifies a state of knowledge and represents the plausibility of an 
event, where ‘‘plausibility’’ implies apparent validity. Bayesian inference uses probability 
distributions to encode information, where the encoding metric is a probability (on an absolute scale 
from 0 to 1) [11]. 

In the Bayesian inference for failure parameters it was considered the exposure data of 
operating experience from different rigs as prior information prediction. 

By considering that the prior state-of-knowledge about θ is represented by the probability 
distribution ߨ଴(θ), and given the available evidence E, the Bayes’ theorem can be used to find the 
posterior probability distribution over θ [15, 16]. 

 

൯ܧหߠ൫ߨ ൌ
௅൫ா|ఏ൯గబ൫ߠหܧ൯

൯ௗఏܧหߠ௅൫ா|ఏ൯గబ൫׬
                                                                                                       

(1) 
 
In Equation (1) θ is the unknown parameter of interest, ܧ is the exposure data, where 

 ൯ is the a posteriori distribution of the hyper-parameters and the likelihood function isܧหߠ൫ߨ
 .൯ߠ|ܧ൫ܮ

In a late study, [17] suggested that a Bayesian Network main application in accident analysis 
is an inference engine for updating the prior occurrence probability of events given new 
information, called evidence. The new information is usually operational data including occurrence 
or non-occurrence of the accident or primary events 

A recent research from [18] proposed an analysis of a hybrid Bayesian-Importance model for 
system designers to improve the quality of services. The proposed model is based on two factors: 
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failure probability measure of different service components and, an expert defined degree of 
importance that each component holds for the success of the corresponding service. (1) 

 
3.2.1 The Choice of a Priori Distribution 

 
This choice and the values for its respective parameters for high level information, top event 

failure, are of fundamental importance in the study of reliability and availability. 
In [19], the authors claim that probability models are typically introduced to represent 

aleatory uncertainty and constitute the basis for the statistical analysis of the data and information 
available on a system, and are considered essential for assessing these uncertainties and drawing 
useful insights on its random behavior. They are also capable of updating the probability values, as 
new data and information on the system become available. 

In this framework, the standard procedure for constructing probability models of random 
events and variables is as follows: (i) observe the process of interest over a finite period, (ii) collect 
data about the phenomenon, (iii) perform statistical analyses to identify the probability model (i.e., 
distribution) that best captures the variability in the available data, and (iv) estimate the internal 
parameters of the selected probability model [19]. 

According to [20 - 22], the probabilities that the experts produce, from previous knowledge, 
assume characteristics of lognormal distributions. 

And conforming to [21] and [23, 24], in the case of lognormal distributions, intuitive 
estimates of the mode (value of the observation that occurs most frequently) or the median (measure 
of central tendency) of the distributions are quite accurate, while mean estimates are partially biased 
towards the median. The median is a measure more representative of the central tendency of the 
distribution and is highlighted as a "better" estimate, besides being conservative. 

Also [20] consider the median value of the lognormal distribution as the most recommended 
for use to obtain better estimates. 

It is also highlighted by [21] and [24] an error factor (EF) of the produced distribution. This 
factor is obtained from the ratio between the highest value of the estimate (percentile 95%) and the 
lowest value (percentile 5%) of a lognormal distribution. 

 
4. METHODOLOGY 
 

Focusing on the effectiveness of this article as measured by the achievement of the main and 
specific objectives described in section two, this structured methodology was employed to describe 
the three stages developed and the procedures used in this research to obtain the results contained in 
section six. 

 
4.1 Classification of This Research 

 
The author [25] mentions that a research can be classified according to two basic criteria: As 

to the purposes and means. 
Regarding to the purposes, the present research is characterized as exploratory and 

methodological. Exploratory because the title of this article, "Estimating BOP Failure Probability 
Through Bayesian FTA" is related to an area with little accumulated and systematized knowledge. 

Methodological because it is a research that refers to instruments of capture of reality and 
associates procedures to achieve a purpose. 

As for the means, this research is characterized as documentary only, since it uses material 
accessible to the general public, via physical or electronic media. 

This would be considered as a field research if an empirical investigation had been carried out 
in the place where the operations related to the BOP occur and that it had elements to explain them. 
Also would include interviews and questionnaires (survey) to the participants (named specialists). 
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4.2 Developed Research Stages 
 

After defining the three specific objectives contained in section two, the first stage was to 
carry out a bibliographic search through the [26]. 

Recent articles (e.g. year 2017) [14] and [18, 19] that represented the state of the art in topics 
related to this article were selected for study. The result of this search is contained in the item 
references. 

The second stage consisted of: (i) getting of the failure rates and probabilities of failure of the 
basic components used in KillLine FT ([10] and Appendix I); (ii) the choice of a priori distribution 
for BE of FT and the a priori probability of TE (Item 4.3); (iii) the modeling of FT (Appendix I) via 
WinBUGS software script (Appendix II). 

In the third stage was obtained the global uncertainty for the BOP failure parameter, which 
was represented by the a posteriori probability density function of occurrence of the top event in the 
system of the kill line with DP drilling rig (Section six). 

The fourth stage was the analyses of the probability value of failure of the conventional BOP 
kill line reported by [10] through a comparison with the values obtained in the third stage and 
conclusions were stated and commented (Section seven). 

 

4.3 The Choice of a Lognormal A Priori Distribution and its Mu and Tau Parameters  
 

According to what was exposed in item 3.2 of this article, this choice and the values for its 
respective parameters for high level information, top event failure (p.TE.pred), are of fundamental 
importance. This choice is related to BE of FT and the a priori probability of TE. 
 
4.3.1 Basic Events (BE) 

 
Due to the best adaptation to the modeling of fourteen BE (from one to eight and from eleven 

to sixteen) contained in the Appendix I, the lognormal distribution was used in these events. For the 
basic events nine and ten an exponential distribution was used (the time values (24 and 48 hours) 
were provided by [10]), with their lambda values modeled by a lognormal. For all BEs an error 
factor (EF) of 10 was used. 

 
4.3.2 A Priori Probability for TE 

 
It was employed a lognormal a priori distribution p.TE.pred ~ dlnorm(mu.TE, tau.TE) for the 

estimation of probability of occurrence of TE using different values (2.5, 5.0 and 10.0) of EF for 
both parameters mu.TE and tau.TE. 

After running the model encoded via winbugs script (Appendix II) using a combination of  
values of EF for mu.TE and tau.TE, nine a posteriori values (97.5%) of p.TE.pred were obtained 
and are represented in Table 1. 

 
Table 1 - A posteriori values (97.5%) of p.TE.pred represented by a predictive lognormal 

Source - The authors (2017) 
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From the observation of table 1, the value 0.8832 for p.TE.pred is the most conservative and 
was selected, which corresponds to the values of EF 2.5 and 10.0, respectively, for mu.TE and 
tau.TE.  

The WinBUGS script conducting a two-stage Bayesian analysis and using these values is 
shown in the Appendix II of this article. 

 
4.3.3 Others A Priori Distributions Besides Lognormal 

 
The beta, uniform, gamma, exponential and normal predictive distributions were employed 

for p.TE.pred in the Appendix II script. All resulting values obtained from p.TE.pred were 
approximately 0.98 and the use of these predictive distributions were discarded. 

 
5. DESCRIPTION OF THE RESEARCH 
 

The fault tree proposed by [10] has a top event (TE) “Failure in the kill line system, 
Conventional BOP, with dynamic positioning (DP) drilling rig”. This system fault tree is 
represented in the Appendix I. 

Through qualitative and quantitative approaches, an analysis of the risks involved in the 
activities related to the TE by [10] will be performed and the reliability of the BOP stack kill line 
configuration will be quantified in terms of the ability to pump fluid of drilling heavier into the well 
during well control operations and thus contain undesirable (kick) inflow. 

Based on the probability density functions a posteriori, one can make decision based on its 
statistical values of percentiles and confidence intervals. 

This analysis will be useful so that preventive tests can be carried out on high cost and risky 
equipment, thus minimizing the probability of failure and financial expenses for an oil company. 

In addition, it is possible to identify which activities are most likely to occur and to relate 
them to those with the highest repair and control costs, but the analysis criteria used are limited to 
non-financial severity effects and, therefore, are not part of the scope of this article. 

The Kill line FT (Appendix I) was coded in the WinBUGS software [27] based on MCMC 
sampling algorithm. WinBUGS allows encoding a model via scripts (Appendix II) or doodles 
(graphical tool to illustrate a model in the form of a Directed Acyclic Graph (DAG)). 

It has three branches: P1) Failure to open (lower valve failure), Control system failure to open 
one of the lower valves and P2) External leaks in kill line extensions. 

The sixteen basic events (by some being distinct), just as the branches and OR and AND logic 
gates were numbered. Among several elements in the FT, valves, pods (yellow and blue) and the 
possibility of occurrence of clogs and leaks were considered. 

To clarify the visualization, this script (Appendix II) was split into the modeling the TE, 
modeling the gates of FT, modeling the priors on BE parameters and the data of BE. 

Considering the exposure data of operating experience from different rigs as prior information 
predictions and using the relationships given in Equation (1), the a posteriori probability for TE can 
be estimated. 

 
6. RESULTS OBTAINED 
 

In this section the simplified application of the methodology formulated in section four is 
made considering a Bayesian net approach for failure modeling allied with Bayesian inference for 
failure parameter to the top event (TE) and results were obtained. 

After running the model encoded via winbugs script (Appendix II)for 49,500 iterations, thea 
posteriori density distribution for the occurrence rate of the kill line system failure (Figure 2) 
wasobtained for the corresponding statistical values of mean, SD, median, 2.5% and 97.5% 
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percentiles (95% confidence interval) (Table 2). It was observed that the values of percentiles 
obtained for 10,000 and 49,500 iterations did not present a significant difference. 

From Table 2 it can be stated that, with 97.5% of confidence, that the probability of failure of 
the kill line will be less than 0.8832 and, with 2.5%, it will be higher. 

The assigned a posteriori failure probability for the top event presented in Table 2 was 
determined over the period of the operation specified by [10]. 

 
p.TE.pred sample: 49500

   -0.5     0.0     0.5     1.0

  0.0

  2.0

  4.0

  6.0

 
Figure 2 - A posteriori distribution of the kill line system failure 

Source - The authors (2017) 
 

Table 2 -A posteriori failure probability for the TOP EVENT of the kill line system failure 
Source - The authors (2017) 

 
Node Mean SD 2.5% Median 97.5% 

p.TE.pred 0.2522 0.2407 0.0103 0.1654 0.8832 
 

Based on the a posteriori distribution, one can make decision based on its statistical values of 
percentiles and confidence interval (Table 2). 

The value of the probability of failure of the conventional BOP kill line (p ≈ 0.8981) reported 
by [10] was obtained assuming that their basic events metrics had no uncertainties. 

From a comparison of this value with the results contained in table 2, it is observed that this is 
close to and above the 97.5% percentile (0.8832), proving to be a very conservative value. 

This value (0.8832) refers only to one of the integral parts of conventional BOP, its kill line, 
and if we consider all the components of BOP, the value of the probability of failure will certainly 
be higher, resulting in a possibility of making the business unfeasible. 

It is important that always should be a balance between the points of view of safety and the 
financial viability of the business for an oil company. 

Using the predictive a posteriori distributions, it is also possible to predict the number of 
events for a specific time interval, for example, year 2017 in this study. This can be done in 
WinBUGS via the trick ofmissing data (www.WinBUGS.info).  

 
7. CONCLUSIONS 
 

Focusing on the effectiveness of this article as measured by the achievement of the main and 
specific objectives described in section two, this was organized in seven sections and appendices 
sequenced and interconnected in a manner like logic adopted in scientific research. 

As a final result, we obtain the global uncertainty for the kill line system with dynamic 
positioning (DP) rigs, which is represented by an a posteriori density (Figure 2). Based on the a 
posteriori, one can make decision based on its statistical values of percentiles and confidence 
intervals for the top event (Table 2). 

The present study has illustrated an application of precursor-based hierarchical Bayesian 
analysis to probability estimation and risk analysis of kill line. Considering blowouts as major 
accidents, we used a fault tree diagram to decompose the kill line to its components.  
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Since these accidents precursors are much likely to be collected from a variety of data sources 
with different physical and operational characteristics, we adopted a two-stage Bayesian analysis to 
model the source to source uncertainty.  

The results obtained in section six were consistent with the theoretical basis contained in 
section three, considering that the basic events uncertainties propagation for the TE of the BOP kill 
line provided a very close probability value of failure when assumed that their basic events metrics 
had no uncertainties. 

The value of the probability of failure of the conventional BOP kill line reported by [10] was 
proved to be a very conservative value, resulting in a possibility of making the business unfeasible. 

It is important to keep in mind that there must always be a balance between the points of view 
of safety and the financial viability of the business for an oil company to be profitable. 

From the satisfactory value obtained in the calculation of the probability of failure of the kill 
line and based in the methodology described in section 4, it is possible to conclude that the 
modeling of the Kill line FT can be considered reliable; the research undertaken reached the main 
and the three specific objectives and therefore can be considered conclusive. 

The aim of this article is to show what is gained from the applicability of its methodology and 
the potential results that can be obtained by the fact that the associated information uncertainties are 
being treated and the possibility of updating the parameters of interest as support for decision 
making. 

In addition, for future work it is proposed to consider high-level data (e.g. system failures) 
and intermediate-level data (e.g. subsystem failures) to update the initial estimates of the FT events 
and, consequently, the BOP kill line failure probability. Other initiatives are to take a totally 
Bayesian approach to include other intervening factors such as common cause failures (CCF), 
human reliability and preventive maintenance effects. 
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APPENDIX I  
 
FAULT TREE REPRESENTATION OF THE FAILURE IN THE KILL LINE SYSTEM 
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APPENDIX II 
 
MODEL ENCODED VIA WINBUGS SCRIPT 

 
model { 
# KILL LINESystem Failure 
 
# This is a system (fault tree TOP EVENT) predictive distribution 
 
p.TE.pred ~ dlnorm(mu.TE, tau.TE)|(,1) 
mu.TE<- log(p.TE)-pow(log(2.5)/1.645, 2)/2 
tau.TE<- pow(log(10)/1.645, -2) 
 
WinBUGS script for modeling the TOP EVENT 

 
 
# Probability of TOP EVENT (Gate OR8) 
p.TE<- p.P1 + p.basic11 + p.OR5 + p.P2 
- p.P1*p.basic11 - p.P1*p.OR5 - p.P1*p.P2 
- p.basic11*p.OR5 - p.basic11*p.P2 
- p.OR5*p.P2 + p.P1*p.basic11*p.OR5*p.P2 
 

 
WinBUGS script for modeling the gates of FT 
 
 
# Probability of Gate P1 (Gate OR6) 
p.P1 <- p.basic12 + p.basic13 - p.basic12*p.basic13 
 
# Probability of Gate OR5 
p.OR5 <- p.AND1 + p.AND2 + p.AND3 
- p.AND1*p.AND2 - p.AND1*p.AND3 - 
p.AND2*p.AND3 
+ p.AND1*p.AND2*p.AND3 
 
# Probability of Gate P2 (Gate OR7) 
p.P2 <- p.basic14 + p.basic15 + p.basic16 - 
p.basic14*p.basic15 
- p.basic14*p.basic16 - p.basic15*p.basic16 + 
p.basic14*p.basic15*p.basic16 
 
# Probability of Gate AND1 
p.AND1 <- p.OR1*p.OR2  
 
# Probability of Gate AND2 
p.AND2 <- p.basic9*p.OR3  
 
# Probability of Gate AND3 
p.AND3 <- p.basic10*p.OR4  
 
# Probability of Gate OR1 
p.OR1 <- p.basic1 + p.basic2 - p.basic1*p.basic2 
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# Probability of Gate OR2 
p.OR2 <- p.basic3 + p.basic4 - p.basic3*p.basic4 
 
# Probability of Gate OR3 
p.OR3 <- p.basic5 + p.basic6 - p.basic5*p.basic6 
 
# Probability of Gate OR4 
p.OR4 <- p.basic7 + p.basic8 - p.basic7*p.basic8 

 
WinBUGS script for modeling the priors on basic event parameters 
 
 
p.basic12 ~ dlnorm(mu.p.basic12, tau.p.basic12)|(,1) 
mu.p.basic12 <- log(mean.p.basic12) - 
pow(log(EF.p.basic12)/1.645, 2)/2 
tau.p.basic12 <- pow(log(EF.p.basic12)/1.645, -2) 
 
p.basic13 ~ dlnorm(mu.p.basic13, tau.p.basic13)|(,1) 
mu.p.basic13 <- log(mean.p.basic13) - 
pow(log(EF.p.basic13)/1.645, 2)/2 
tau.p.basic13 <- pow(log(EF.p.basic13)/1.645, -2) 
 
p.basic14 ~ dlnorm(mu.p.basic14, tau.p.basic14)|(,1) 
mu.p.basic14 <- log(mean.p.basic14) - 
pow(log(EF.p.basic14)/1.645, 2)/2 
tau.p.basic14 <- pow(log(EF.p.basic14)/1.645, -2) 
 
p.basic15 ~ dlnorm(mu.p.basic15, tau.p.basic15)|(,1) 
mu.p.basic15 <- log(mean.p.basic15) - 
pow(log(EF.p.basic15)/1.645, 2)/2 
tau.p.basic15 <- pow(log(EF.p.basic15)/1.645, -2) 
 
p.basic16 ~ dlnorm(mu.p.basic16, tau.p.basic16)|(,1) 
mu.p.basic16  <- log(mean.p.basic16) - 
pow(log(EF.p.basic16)/1.645, 2)/2 
tau.p.basic16 <- pow(log(EF.p.basic16)/1.645, -2) 
 
p.basic11 ~ dlnorm(mu.p.basic11, tau.p.basic11)|(,1) 
mu.p.basic11 <- log(mean.p.basic11) - 
pow(log(EF.p.basic11)/1.645, 2)/2 
tau.p.basic11 <- pow(log(EF.p.basic11)/1.645, -2) 
 
p.basic1 ~ dlnorm(mu.p.basic1, tau.p.basic1)|(,1) 
mu.p.basic1 <- log(mean.p.basic1) - 
pow(log(EF.p.basic1)/1.645, 2)/2 
tau.p.basic1 <- pow(log(EF.p.basic1)/1.645, -2) 
 
p.basic2 ~ dlnorm(mu.p.basic2, tau.p.basic2)|(,1) 
mu.p.basic2 <- log(mean.p.basic2) - 
pow(log(EF.p.basic2)/1.645, 2)/2 
tau.p.basic2 <- pow(log(EF.p.basic2)/1.645, -2) 
 
p.basic3 ~ dlnorm(mu.p.basic3, tau.p.basic3)|(,1) 
mu.p.basic3 <- log(mean.p.basic3) - 
pow(log(EF.p.basic3)/1.645, 2)/2 
tau.p.basic3 <- pow(log(EF.p.basic3)/1.645, -2) 
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p.basic4 ~ dlnorm(mu.p.basic4, tau.p.basic4)|(,1) 
mu.p.basic4 <- log(mean.p.basic4) - 
pow(log(EF.p.basic4)/1.645, 2)/2 
tau.p.basic4 <- pow(log(EF.p.basic4)/1.645, -2) 
 
p.basic5 ~ dlnorm(mu.p.basic5, tau.p.basic5)|(,1) 
mu.p.basic5 <- log(mean.p.basic5) - 
pow(log(EF.p.basic5)/1.645, 2)/2 
tau.p.basic5 <- pow(log(EF.p.basic5)/1.645, -2) 
 
p.basic6 ~ dlnorm(mu.p.basic6, tau.p.basic6)|(,1) 
mu.p.basic6 <- log(mean.p.basic6) - 
pow(log(EF.p.basic6)/1.645, 2)/2 
tau.p.basic6 <- pow(log(EF.p.basic6)/1.645, -2) 
 
p.basic9 <- 1 - exp(-lambda.9*time.9) 
lambda.9 ~ dlnorm(mu.p.basic9, tau.p.basic9) 
mu.p.basic9 <- log(mean.p.basic9) - 
pow(log(EF.p.basic9)/1.645, 2)/2 
tau.p.basic9 <- pow(log(EF.p.basic9)/1.645, -2) 
 
p.basic7 ~ dlnorm(mu.p.basic7, tau.p.basic7)|(,1) 
mu.p.basic7 <- log(mean.p.basic7) - 
pow(log(EF.p.basic7)/1.645, 2)/2 
tau.p.basic7 <- pow(log(EF.p.basic7)/1.645, -2) 
 
p.basic8 ~ dlnorm(mu.p.basic8, tau.p.basic8)|(,1) 
mu.p.basic8 <- log(mean.p.basic8) - 
pow(log(EF.p.basic8)/1.645, 2)/2 
tau.p.basic8 <- pow(log(EF.p.basic8)/1.645, -2) 
 
p.basic10 <- 1 - exp(-lambda.10*time.10) 
lambda.10 ~ dlnorm(mu.p.basic10, tau.p.basic10) 
mu.p.basic10 <- log(mean.p.basic10) - 
pow(log(EF.p.basic10)/1.645, 2)/2 
tau.p.basic10 <- pow(log(EF.p.basic10)/1.645, -2) 
 

 
} 
 

WinBUGS script for data of basic events 
 

 
data 
list(time.9=24, time.10=48,  
mean.p.basic12=0.005, EF.p.basic12=10,  
mean.p.basic13=0.005, EF.p.basic13=10, 
mean.p.basic14=1.05E-2, EF.p.basic14=10,  
mean.p.basic15=1.03E-2, EF.p.basic15=10, 
mean.p.basic16=1.03E-2, EF.p.basic16=10,  
mean.p.basic11=0.077, EF.p.basic11=10, 
mean.p.basic1=0.5, EF.p.basic1=10,  
mean.p.basic2=0.5, EF.p.basic2=10, 
mean.p.basic3=0.5, EF.p.basic3=10,  
mean.p.basic4=0.5, EF.p.basic4=10, 
mean.p.basic5=0.5, EF.p.basic5=10,  
mean.p.basic6=0.5, EF.p.basic6=10, 
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mean.p.basic9=1.67E-3, EF.p.basic9=10,  
mean.p.basic7=0.5, EF.p.basic7=10, 
mean.p.basic8=0.5, EF.p.basic8=10,  
mean.p.basic10=3.34E-3, EF.p.basic10=10) 
 

 
Inits 
list() 
 


