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ABSTRACT 

Hydropower plants have strict contractual requirements regarding availability and reliability in the 

production of electrical energy. In order to achieve this, there are different techniques of predictive 

maintenance, but for all of them there are two common problems (a) the time interval between in indicator of 

deterioration and the failure (P-F interval) and (b) the success rate of the inspection device (sensor). There is 

a gap in the literature about the optimal interval for different equipment and also about the success rate of 

sensors in each application. 

In this paper, we propose a methodology based on data science in order to estimate the probable PF-

interval using real data of failure, number failures in the past and a Monte Carlo simulation model. The 

model considers probability of time-to-failure of the equipment, probability of detection just before failure, 

decrease in probability of failure dependent on time interval before failure occurrence, cost of inspection, 

among others. This model is applied to a number of scenarios in order estimate the both success ratio and P-

F interval using an algorithm specially developed to solve this problem. 

We apply this model to a number of equipment in hydroelectric plants and construct rules-of-thumb 

for them in order to allow optimization of both successes of inspection programs and budget. This model is 

under way in the analysis of real data from a power generation company and initial results shows that they 

can be complemented with other research efforts in order to create, for example, a database with more 

complete information physical asset decision-makers. 
 

 

1. INTRODUCTION 
 

Hydropower plants have strict contractual requirements regarding availability and reliability in the 

production of electrical energy. In order to achieve this, companies make use of different techniques of 

predictive maintenance, to avoid time and cost of failures, such as vibration analysis, oil analysis, infrared 

thermography, acoustic/ultrasonic, electrical measures, etc. [1]. In case that failure is the end of a process, 

these techniques can identify that such failure is about to happen and then a preventive maintenance can be 

scheduled. For the application of all of these techniques there are two common problems (a) the time interval 

between an indicator of deterioration and the failure (P-F interval) and (b) the success rate of the inspection 

device (sensor).  

One of the difficulties in RAM analysis (Reliability Availability and Maintainability analysis) is to 

model the efficiency of an inspection in order to identify a potential failure. For this problem, there is a gap 

in the literature about the predictive maintenance efficiency. For this reason, the objective of this paper is to 

present an approach to evaluate and set this efficiency during the validation process of an RAM analysis. 

In this paper, we propose a methodology based on data science in order to estimate the probable PF-

interval using real data of failure, number failures in the past and a Monte Carlo simulation model. The 

model considers probability of time-to-failure of the equipment, probability of detection just before failure, 

decrease in probability of failure dependent on time interval before failure occurrence, among others. We 
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apply this model to a number of equipment in hydroelectric plants and construct rules-of-thumb for them in 

order to allow optimization of both successes of inspection programs and budget. This model is under way in 

the analysis of real data from a power generation company and initial results shows that they can be 

complemented with other research efforts in order to create, for example, a database with more complete 

information physical asset decision-makers. 

This paper has 4 sections. In section 2 there is an overview of inspection (concepts, definition, etc.). 

Section 4 presents case application and results. Numerical data are not real because of confidentiality, 

although represent practical cases. Finally, section 4 presents final comments of this paper. 

 

 

2. DETECTION PROBABILITY MODELING 
 

For those failures that results from a degradation process (they do not happen suddenly), Moubray [2] 

presents the concept of decrease in asset’s condition as illustrated in Figure 1. 

 

 
Figure 1 - P-F curve model (Source: adapted from [2])  

 

The point “P” represents the moment when there is evidence that a failure is about to occur. This point 

is the limit of predictive technology. In order to move point P to left (farther from failure), one need more 

advanced predictive technology. Point “F” represents when the failure really occurs.  

The PF interval is the distance in time between point “P” and “F”. In Figure 1, additionally a point 

“IM” represents the inspection time, which depends on the inspection frequency. After the inspection, if 

there is any evidence that a failure is about to happen, it is possible to take action to prevent/avoid the 

consequences of the functional failure. In this case, inspection can be visual or by instrumentation. 

The failure detection probability measures the efficiency of an inspection.  In practice, there is a 

spectrum of probability to describe the PF curve. One way of equating this failure detection probability is 

with a linear model: 

 

 

where �� represents the inspection’s probability of detecting the failure immediately before its occurrence, ��� is the PF interval and ∆� the time difference between point IM and F (see Figure 1 again).  

To illustrate the application of equation 1, consider that parameters �� � 100% and ��� � 120 hours 

are employed to define the curve displayed in Figure 2. 

 

��∆�
 � ��� �1 � ∆����� ���	∆� � ���0 ���	∆� � ���	 (1) 
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Figure 2 - Detection probability as function of ∆�  
 

In Figure 2 is easy to see that with linear model the detection probability decreases linearly until to 

reach 0% in the PF interval in the time interval larger than 120 hours far from failure. On the other case, just 

before the failure, the probability of detection is 100%. 

 

 

3. NUMERICAL EXAMPLE AND DISCUSSIONS 

 

The first numerical example considers a potential transformer with time to failure modeled by an 

exponential distribution with mean equal to 6.500 hours and time to repair negligible. If the inspection is 

performed each 730 hours and the PF curve model is linear with ��equal to 100%, the relations between 

mean number of correctives and preventives maintenance in a lifetime of 10 years versus PF interval are 

expressed in Figure 3. 

 

 
Figure 3 - Numbers of correctives and preventives versus PF interval. 

 

The results of Figure 3 are based on 10.000 simulations in the software Availability Workbench. If the 

expected number of failures is about 8 in 10 years, the PF interval of 1.000 hours is a good estimation of the 

PF interval parameters. So, the analyst can adjust the PF interval parameter to validate the equipment/system 

performance. 

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 120 140

D
e
te

ct
io

n
 p

ro
b

a
b

il
it

y

∆T in hours

0

2

4

6

8

10

12

14

0 200 400 600 800 1.000 1.200 1.400 1.600 1.800 2.000

M
e

a
n

 o
co

rr
e

n
ce

s 
d

u
ri

n
g

 t
h

e
 l

if
e

ti
m

e
 o

f 

1
0

 y
e

ra
s

PF interval in hours

Correctives

Preventives



Artigo completo nº 20170619160919 

Congresso ABRISCO 2017 4 

 

In a power generation plant it is common to find subsystems with several components in series. In this 

sense and in order to supply a numerical example to discuss the proposed PF interval definition approach, 

first is considered one Reliability Block Diagram (RBD) in Figure 4. 

 

 
Figure 4 – Reliability Block Diagram of the System 

 

In Figure 4, note that there are two subsystems in series. It means that the unavailability of any of the 

two subsystems implies in the system unavailability. Each of the subsystems A and B has a number of 

components as shown in Figure 5.  

 

 
(a) 

 

 
(b) 

Figure 5 – Reliability Block Diagram of the Subsystem A and B. 

 

Figure 5 (a) indicates that the subsystem A has 10 identical components of the type A. Similarly, 

Figure 5 (b) indicates that the subsystem B has 10 identical components of the type B. The following 

assumptions are considered in this study: 

• For the component type A, the time to failure is modeled by an exponential with mean equal to 

12.000 hours, corrective and preventive maintenance  time are 120 hours and 48 hours, respectively, 

and the inspection interval is 730 hours; 

• For the component type B, the time to failure is modeled by an exponential with mean equal to 

26.000 hours, corrective and preventive maintenance time are 180 hours and 72 hours, respectively, 

and the inspection interval is 4.380 hours. 

 

Considering 10 years of simulation and 1.000 simulations, the Table 1 summarizes, for the subsystem 

A, the mean downtime in hours as a function of the PF interval in hours for its related inspections. 

 

Table 1 - Mean total downtime in hours of the subsystem A according to the respective PF interval 

associated with the inspection of the components of this subsystem. 

PF interval (hours) 360 480 600 720 840 960 1.080 

Mean total downtime 

(hours) 
7.091 6.772 6.351 5.956 5.643 5.350 5.161 

 

PF interval equal to 360 hours implies in a mean total downtime of the subsystem A equal to 7.091 
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hours. As the PF interval increases, the mean total downtime of the subsystem A increases too.  

Similarly, Table 2 summarizes, for the subsystem B, the mean downtime in hours as a function of the PF 

interval in hours for its related inspections. 

 

Table 2 – Mean total downtime in hours of the subsystem B according to the respective PF interval 

associated with the inspection of the components of this subsystem. 

PF interval (hours) 2.190 2.920 3.650 4.380 5.110 5.840 6.570 

Mean total downtime 

(hours) 
5.103 4.794 4.516 4.278 4.046 3.869 3.721 

 

PF interval equal to 2.190 hours implies in a mean total downtime of the subsystem B equal to 5.103 

hours. Again, as the PF interval increases, the mean total downtime of the subsystem B increases too.  

For both simulations (presented in Table 1 and 2), the range tested was based on plausible possibilities 

of PF interval. It means that, at this point, extra information, like analyst´s experiences, is important. 

Figure 6 presents the data from Table 1 and 2 in form of chart. 

 

  
(a) (b) 

Figure 6 – Mean total downtime in hours of each subsystem according to the respective PF interval 

associated with the inspection of the components of the subsystem. 

 

Note that both mean total downtime decreases with similar pattern. 

During a validation processes, if the total downtime was expected to be around 6.000 hours for the 

subsystem A, a reasonable a PF interval is approximated to 720 hours. In other words, the total downtime 

observed in practice cannot be strongly different from the simulated after the validation. So the PF interval 

can be estimated to generate a reasonable mean total downtime. 

Table 3 contains the impacts of the set of PF intervals, for type A and B, in the mean system total 

downtime. 

 

Table 3 – Mean system total downtime (in hours) based on the PF intervals (in hours) of inspections 

associated with type A e B assets. 

PF interval of 

type A assets 

PF interval of type B assets 

2.190 2.920 3.650 4.380 5.110 5.840 6.570 

360 11.786 11.570 11.308 11.052 10.863 10.668 10.529 

480 11.428 11.090 10.892 10.704 10.438 10.270 10.200 

600 11.060 10.743 10.501 10.323 10.087 9.944 9.788 

720 10.681 10.422 10.193 9.887 9.755 9.561 9.453 

840 10.404 10.088 9.856 9.650 9.459 9.297 9.136 

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

360 480 600 720 840 960 1.080

M
e
a
n

 t
o
ta

l 
d

o
w

n
ti

m
e
 i
n

 h
o
u

rs

PF interval of type A assets in hours

Subsystem of

components of type A

0

1.000

2.000

3.000

4.000

5.000

6.000

2.190 3.650 5.110 6.570

M
e
a
n

 t
o
ta

l 
d

o
w

n
tm

e
 i
n

 h
o

u
rs

PF interval of type B assets in hours

Subsystem of

componentes of type B



Artigo completo nº 20170619160919 

Congresso ABRISCO 2017 6 

 

960 10.071 9.793 9.593 9.374 9.175 9.035 8.847 

1.080 9.835 9.641 9.419 9.096 8.946 8.750 8.648 

 

According to the sets studied the mean system downtime can range from 8.648 hours to 11.786 hours. 

The Figure 7 presents the Table 3 as a chart. 

 

 
Figure 7 – Mean system total downtime (in hours) based on the PF intervals (in hours) of inspections 

associated with type A e B assets. 

 

The different colors indicate the different ranges of mean system total downtime. It’s possible to 

notice that different set of PF intervals can result in the same mean system total downtime. So, it´s important 

to have more than one target to validate the PF curve parameters, as the subsystems total downtime. 

During the validation process some source of errors can make the definition of the PF intervals more 

complex, one example is the corrective maintenance delay time. In Figure 8 the plot contains the relationship 

between simulated mean system total downtime and logistic delay time of any corrective maintenance. This 

logistic delay time of corrective maintenance is the time spent between the failure moment and the initiation 

of the corrective maintenance.  
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Figure 8 – Mean system total downtime due to logistic delay of corrective maintenance.  

 

In Figure 8 is possible to notice that the mean system total downtime increases proportionally to the 

logistic delay time. Based on the expectation that more inspections used to identify a future failure must 

decrease the number of corrective maintenance, the logistic delay time affects the validation process too. So 

this is another variable which the analyst must be aware during the definition of PF interval. In other words, 

an unrealistic the corrective delay time can be misleading to the PF interval definition.  

 

 

4. FINAL COMMENTS 
 

The definition of the parameters of a PF curve is not trivial. This paper showed that, belong of using 

only the subjective assessment of the analyst team or information from the inspection system manufacturer, 

the validation process of model based on RBD simulation is an great opportunity to refine the definition of 

the PF curve parameters.  Another important observation was that, during the validation process, to ignore 

some sources of error like logistic delay time of corrective maintenance must be misleading to PF curve 

parameters definition. 
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