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This work involves the use of the q-Exponential distribution in the reliability area. The q-Exponential 

distribution has two parameters (𝑞 and 𝜂) and it stems from Tsallis’ non-extensive entropy. This distribution 

has more flexibility regarding its decay for the Probability Density Function (PDF) curve. Besides that, the q-

Exponential does not have the limitation of a constant hazard rate like the Exponential one, thus allowing the 

modeling of either system improvement (1 < 𝑞 < 2) or degradation (𝑞 < 1). The q-Exponential distribution 

can model very well data sets with extreme values, which corresponds to improvement phase of systems. This 

feature is interesting on the reliability context because many equipment can work for long time until the first 

failure. In this case, the q-Exponential presents power law characteristic. However, when data sets are related 

to the degradation phase of systems, the application of the q-Exponential becomes difficult due to convergence 

problems in the estimation process via maximum likelihood method. This problem is called “monotone 

likelihood” and is associated with a monotone behavior of the log-likelihood function. In order to correct this 

problem the Firth’s penalization method is applied on the q-Exponential log-likelihood function. The obtained 

results shows that the penalized function can model data well even for small samples. The Nelder-Mead 

numerical method was used to estimate the parameters. Comparisons were made between the results obtained 

with the q-Exponential log-likelihood function original and the q-Exponential log-likelihood function 

penalized. 

 

1. INTRODUCTION 

 

The q-Exponential distribution has two parameters (𝑞 and 𝜂), 𝑞  is the shape parameter and 𝜂  is the 

scale parameter. According to [1] it is obtained by maximizing the non-extensive entropy under appropriate 

constraints. When compared with the Exponential distribution that has just one parameter (𝜂). The q-

Exponential distribution has more flexibility regarding its decay for the Probability Density Function (PDF) 

curve. Indeed, the Exponential probability distribution is a special case Another feature of this distribution is 

that it does not have the limitation of a constant hazard rate, thus allowing the modeling of either system 

improvement (1 < 𝑞 < 2) or degradation (𝑞 < 1). 

For the reliability, in general, for a given sample with values that have great order of magnitude, the q-

Exponential distribution is expected to adjust the data well. In cases like these, the parameter 𝑞 lies within the 

interval (1, 2), when parameter 𝑞 is in this interval it leads to the power law asymptotic behavior [2]. Actually, 

the q-Exponential distribution can modelling the three phases of the bathtub curve. The classic bathtub curve 

against time has three distinct periods: decreasing failure rate for infant mortality; constant failure rate for 

useful life; and increasing failure rate (without bound) for wear-out. The Figure 1 bellow shows a bathtub 

curve. 

It has been observed in previous works as in  [3] that, when 𝑞 < 1, the techniques used to obtain the 

maximum likelihood estimates either provide poor results or fail to converge. In those cases, the q-Exponential 

log-likelihood function seems to be monotonically increasing, which renders the estimation task theoretically 

impossible.  
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A function is characterized as monotone when it preserves the relation of order, in the case crescent, the 

function increases measure the parameters also increase. According to [4], the called “monotone likelihood” 

is a situation where the log-likelihood obtain its maximum for infinite parameter values. [5] affirm that the 

monotone likelihood is noted in the fitting process of a Cox model if the likelihood converges to a finite value 

while at least one parameter estimate diverges to ±∞. 

 

Figure 1: The classical bathtub curve 

 

 

The monotone likelihood has been verified in many cases, in his work [6] studied about the q-

Exponential distribution and he found indicators that this distribution present the behavior called monotone 

likelihood. He found this characteristic while tried estimate the parameters of this distribution to the case which 

𝑞 < 1. He perceived that when 𝑞 < 1  there are problems in the estimate of the parameters, resulting in a poor 

modeling of the data set. Furthermore, the estimates in this case yields large confidence intervals.   

Some authors have been worked in the problem of the monotone likelihood. There are some methods in 

the literature to solve this problem, the ways to correct this problem are different from author to author. [7] 

developed a method, his method is an approach to bias reduction which does not depend of finiteness of 𝜃. [8] 

worked with bootstrap approach to correct this problem. [5] proposed a method which is an adaptation of a 

procedure by [7]. [9] suggested a method to correct the likelihood function also based on resampling.  

The q-Exponential distribution, as others q-distributions, have been applied to an large variety of 

problems in varied research areas including the field of complex systems [2]. This distribution has been studied 

by some authors, as [2], who brings in his work a resume of basic properties of the q-Exponential, by [6], who 

verified that there was indications that the q-Exponential likelihood function might to be monotone. [10] 

showed that the population of a country is well described by a q-Exponential distribution with 𝑞 = 1.7. [11] 

verified that the temporal correlation function of hydrogen bonds has a q-Exponential behavior. [12] proposed 

a possible way to understanding the ubiquity of the q-Exponential distribution in nature. 

The q-Exponential distribution has been fairly utilized in the reliability area, this because it has the 

feature of modeling very well data sets with big values [2]. This feature is interesting on the reliability context 

because so many machines or equipments has a big usefull life, in other words, they can work for long time 

until the first failure. However, the problem verified in the q-Exponential distribution happen in the degradation 

phase of systems, in other words, the parameter q assume values less than one when the equipment is found in 

their final phase or degradation phase (last phase of bathtub curve). And it is important to reliability be able to 

modelling data coming of a system in this conditions. 

The general objective this work is to use a method to correct the q-Exponential distribution log-

likelihood function so as to obtain good estimates for its parameters. The proposed method will be applied to 

model reliability-related data of engineered equipment.  
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2. DESCRIPTION OF WORK REALIZED  

  

Regarding its finality, this work is characterized as an applied research, because it is conducted to solve 

a specific problem of literature and to a practical methodology implementation. It presents an application of a 

method to correct the q-Exponential likelihood function in order to apply the results in practical problems. 

Besides, this project can be classified as qualitative and quantitative. It is qualitative because use the 

literature review to understand and analyze the specific problem treated in this work. And, it is quantitative 

because uses computational programs and statistical methods to find a solution to the problem of this research 

and to apply and analyze the solution obtained. 

This research can be sub-divided in the following steps: 

 Step 1: Initially, it was made review about the topics that was studied in this work. The topics 

are: the features of the q-Exponential distribution; the problem that is verified in this distribution 

(monotone likelihood); the methods that could solve this problem; the numerical methods of 

maximizing functions that could be used for maximizing the q-Exponential log-likelihood 

function.   

 Step 2: Then, after to study the Firth’s method, it was chosen to be applied on the q-Exponential 

distribution. 

 Step 3: Next, the simulations for test the corrected function was made in the software R. The 

results are showed in the Table 1 and 2. 

 

3. THEORETICAL BACKGROUND 

 

3.1. q-Exponential Distribution 
 

The q-Exponential distribution has the following probability density function (PDF): 

 

𝑓𝑞(𝑡) =
(2−𝑞)[1−

(1−𝑞)𝑡

𝜂
]

1
1−𝑞⁄

𝜂
, for 𝑡 ≥ 0,                                                                                                               (1)                     

 

𝑞 < 1 or  𝑞 < 2 and 𝜂 > 0. 

 

The parameter 𝑞 determines the density shape and is known as entropic index, the parameter 𝜂 is the 

scale parameter. In the limit 𝑞 → 1, Eq. (1) recovers the usual Exponential distribution. When 𝑞 < 1, Eq. (1) 

has a finite value for any finite real value of 𝑡. When 𝑞 > 1, Eq. (1) presents power law characteristic, a 

asymptotic behavior. 

Moreover, we will have different results for the support t, depending on the value of the entropic index: 
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𝑡 ∈ {
(0; ∞],   1 < 𝑞 < 2

[0,
𝜂

1−𝑞
] , 𝑞 < 1

.                                                                                                                         (2) 

 

Figure 1 shows the q-Exponential PDF for two possible values of 𝑞 and 𝜂 constant, illustrating the 

behavior. 

The q-Exponencial has the following Cumulative Distribution Function (CDF): 

 

𝐹𝑞(𝑡) = 1 − [1 − (1 − 𝑞) (
𝑡

𝜂
)]

2−𝑞

1−𝑞
, 𝑡 ≥ 0.                                                                                           (3) 

 

Figure 2:  q-Exponencial PDF for  η=3 and some possible values of q. 

 

By definition, the hazard rate is ℎ𝑞(𝑡) =
𝑓𝑞(𝑡)

𝑅𝑞(𝑡)
 , where 𝑅𝑞(𝑡) = 1 − 𝐹𝑞(𝑡). 

Thus, we can write: 

 

ℎ𝑞(𝑡) =

(2−𝑞)[1−
(1−𝑞)𝑡

𝜂 ]

1
1−𝑞

𝜂

[1−
(1−𝑞)𝑡

𝜂
]

2−𝑞
1−𝑞

=
(2−𝑞)

𝜂
[1 −

(1−𝑞)𝑡

𝜂
]

𝑞−1

1−𝑞
.                                                                                (4) 

 

Differently from the Exponential distribution, the q-Exponential hazard rate is not constant. Actually, 

this is an important characteristic of the q-Exponential distribution, especially in the reliability context. 
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Figure 3: q-Exponencial CDF with 𝛈 = 𝟑 and 𝐪 = −𝟏. 𝟓. 

 

 

Figure 4: q-Exponencial h(t) with η=2 and 𝐪 = 𝟏. 𝟓. 

 

3.2. Estimation of Parameters 
 

3.2.1. Maximum Likelihood Estimation 

 
There are some ways to estimate a parameter a probabilistic model of interest, but the maximum 

likelihood method is one of the most used techniques. Considering the uniparametric case, assume a random 

sample of the random variable 𝑋 with size 𝑛: 𝑋1, 𝑋2, ⋯ , 𝑋𝑛. It is symbolized the probability density function 

(PDF) of the random variable 𝑋, as 𝑓(𝑋|𝜃), with 𝜃 ∈ Θ, where Θ is the parametric space. Thus, the likelihood 

function of Θ, for the considered sample, can be written as is presented by [13]: 

 

𝐿(𝜃|𝑋) = ∏ 𝑓(𝑥𝑖|𝜃)𝑛
𝑖=1 .                                                                                                                          (5) 

 

The value that maximizes the likelihood function is the Maximum Likelihood Estimator of 𝜃. It is represented 

this value as 𝜃 ∈ Θ. 

In general, to get maximum likelihood estimates by maximizing the natural logarithm of the likelihood function 

is easier than by maximizing directly the likelihood function. In this way, it is determined the log-likelihood 

function as: 

 

𝑙(𝜃|𝑋) = log[𝐿(𝜃|𝑋)].                                                                                                                     (6) 
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Thus, are obtained the maximum likelihood estimate calculating the root of the derivative of the log-likelihood 

function, i. e.: 

 

𝑑𝑙(𝜃|𝑋)

𝑑𝜃
= 0.                                                                                                                                        (7) 

 

In situations in which it is not possible to get the solution of log-likelihood function analytically, the solution 

of the equation above can be obtained by numerical procedures or by heuristics. 

In the specific case of the q-Exponential distribution, the likelihood function is the described following. Let 

𝑥 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} be a random sample of size 𝑛. Thus, the q-Exponential likelihood function is  

 

𝐿(𝑥, 𝑞, 𝜂) = ∏
(2−𝑞)[1−

(1−𝑞)𝑥𝑖
𝜂

]

1
1−𝑞⁄

𝜂
𝑛
𝑖=1 =

(2−𝑞)𝑛

𝜂𝑛
∏ [1 −

(1−𝑞)𝑥𝑖

𝜂
]

1
1−𝑞⁄

𝑛
𝑖−1       (8) 

 

and the corresponding log-likelihood function is  

 

𝑙(𝑡, 𝑞, 𝜂) = ln (
(2 − 𝑞)𝑛

𝜂𝑛
∏ [1 −

(1 − 𝑞)𝑡𝑖

𝜂
]

1
1−𝑞⁄𝑛

𝑖=1

) = 

=  𝑛 ln (
2−𝑞

𝜂
) +

1

1−𝑞
∑ ln (1 −

(1−𝑞)𝑡𝑖

𝜂
)𝑛

𝑖=1 .                                                                                                             (9) 

 

 

The transformation above can be used because it is a monotonic transformation, in other words, it is a 

transformation that preserves the order of the numbers. Thus, the values that maximize Eq. (8) are the same 

that maximize Eq. (9). 

To obtain the Maximum Likelihood Estimates (MLEs) of the parameters the log-likelihood function is 

maximized. This can be done by setting the first derivative of 𝑙 which respect to each parameter to zero. The 

q-Exponential score equations are the following: 

 

0 =
𝜕𝑙

𝜕𝑞
= −

𝑛

2−𝑞
+

1

(1−𝑞)2
∑ ln (1 −

(1−𝑞)𝑡𝑖

𝜂
) +

1

1−𝑞
∑

𝑡𝑖

𝜂(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1

𝑛
𝑖=1 , 

 

0 =
𝜕𝑙

𝜕𝜂
= −

𝑛

𝜂
−

1

1−𝑞
∑

(1−𝑞)𝑡𝑖

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1 .                                                                                               (10) 

 

The Eq. (10) does not have a closed solution, because of that it is necessary to use non-linear maximization 

methods to obtain our parameters estimates. However, numerical maximization of the q-Exponential log-

likelihood function may fail to converge and may yield poor parameter estimation. 
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3.3. Nelder-Mead 
 

The Nelder–Mead method is a numerical approach frequently applied to nonlinear optimization, it is 

also known as Downhill Simplex method. This method is used to find the minimum or maximum of an 

objective function in a multi-dimensional space. It is a method fairly used in unconstrained optimization 

problem of a function of 𝑛 variables. This numerical approach has been used in many studies with the aim of 

maximizing the log-likelihood function and to estimate the parameters of various probability distributions in 

many areas. 

According to [14] the Nelder-Meade method present the following features:  

 Ease of computational implementation; 

 Calculations of the derivatives of the objective function are not necessary; 

 Few evaluations of the objective function are necessary; 

 The value of the objective function quickly decreases in the first iterations. 

The Nelder-Mead uses the concept of a simplex, which is a special polynomium type with 𝑛 + 1 vertices 

in 𝑛 dimensions. 

Consider the problem of unconstrained minimization: 

 

min
𝑥∈𝔑𝑛

𝑓(𝑥), where, 𝑓: 𝔑𝑛 ⟶ 𝔑. 

 

In this work 𝑓(𝑥) is the negative of the q-Exponential log-likelihood. 

In one iteration of this method, the 𝑛 + 1 vertices of the simplex, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛+1 belonging to 𝔑𝑛 are 

required according to the growth of the values of 𝑓, i.e: 

 

𝑓(𝑥1) ≤ 𝑓(𝑥2) ≤ ⋯ ≤ 𝑓(𝑥𝑛+1).   

 

Where 𝑥𝑛+1 is the worst vertex and 𝑥1 is the best vertex. 

The repositioning of these vertices takes into consideration four coefficients: 

 Reflection coefficient (𝜌) 

 Expansion coefficient (𝜒) 

 Contraction coefficient (𝛾) 

 Reduction coefficient (𝜎) 

[15] explain that these coefficients must satisfy the following restrictions: 
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𝜌 > 0, χ > 1, 0 < 𝛾 < 1 and 0 < 𝜎 < 1. 

 

The Nelder-Mead attempts to exchange the worst vertex of the simplex by one with better value. The 

new vertex is get by reflecting, expansion or contraction of the worst vertex along the line through this vertex 

and the centroid of the best n vertices. The worst vertex is substitute by a new vertex or the simplex is 

reduced around the better vertex, at each iteration. 

Below is presented a set of steps that corresponding to an interaction of the Nelder-Mead algorithm 

[15]: 

 Step 1 - Rank: Rank the 𝑛 + 1 vertices: 

𝑓(𝑥1) ≤ 𝑓(𝑥2) ≤ ⋯ ≤ 𝑓(𝑥𝑛+1); 

 Step 2- Centroid: Calculate the centroid of the 𝑛 best vertices: 

𝑥̅ = ∑
𝑥𝑖

𝑛
𝑛
𝑖=1 . 

 Step 3- Reflected vertex: Calculate the reflected vertex (𝑥𝑟): 

𝑥𝑟 = 𝑥̅ + 𝜌(𝑥̅ − 𝑥𝑛+1). 

If 𝑓(𝑥1) ≤ 𝑓(𝑥𝑟) ≤ 𝑓(𝑥𝑛), then do 𝑥𝑛+1 = 𝑥𝑟 and finalize the iteration. 

 Step 4- Expansion: If 𝑓(𝑥𝑟) ≤ 𝑓(𝑥1), calculate the expanded vertex (𝑥𝑒): 

𝑥𝑒 = 𝑥̅ + χ(𝑥𝑟 − 𝑥̅). 

If 𝑓(𝑥𝑒) ≤ 𝑓(𝑥𝑟), then do 𝑥𝑛+1 = 𝑥𝑒 and finalize the iteration, else 𝑥𝑛+1 = 𝑥𝑟 and finalize the iteration. 

 Step 5- Contraction: If 𝑓(𝑥𝑟) ≥ 𝑓(𝑥𝑛) 

5.1 External: 

      If (𝑥𝑛) ≤ 𝑓(𝑥𝑟) ≤  𝑓(𝑥𝑛+1), calculate the external contraction vertex (𝑥𝑐𝑒) : 

𝑥𝑐𝑒 = 𝑥̅ + 𝛾(𝑥𝑟 − 𝑥̅). 

             If 𝑓(𝑥𝑐𝑒) ≤ 𝑓(𝑥𝑟), then do 𝑥𝑛+1 = 𝑥𝑐𝑒 and finalize the iteration, else go to step 6. 

              5.2 Internal: 

              If 𝑓(𝑥𝑛) ≥ 𝑓(𝑥𝑛), calculate the internal contraction vertex(𝑥𝑐𝑖): 

𝑥𝑐𝑖 = 𝑥̅ − 𝛾(𝑥̅ − 𝑥𝑛+1). 

               If 𝑓(𝑥𝑐𝑖) ≤ 𝑓(𝑥𝑛+1), then do 𝑥𝑛+1 = 𝑥𝑐𝑖 and finalize the iteration, else go to step 6. 

 Step 6- Reduction: Calculate vectors 𝑣𝑖 = 𝑥1 + 𝜎(𝑥𝑖 − 𝑥1), 𝑖 = 2, ⋯ , 𝑛 + 1. The vertices (not 

ordered), for the next iteration are: 𝑥1, 𝑣2, ⋯ , 𝑣𝑛+1.  

[15] explain that given a tolerance ∆𝑡𝑜𝑙, the following stop criterion takes into account the function value 

in the simplex vertices: 

√∑
(𝑓(𝑥𝑖)−𝑓(𝑥̅))

2

𝑛
𝑛+1
𝑖=1 < ∆𝑡𝑜𝑙. 
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3.4. Firth’s Method 

 

A method to apply a penalty to log-likelihood function in order to reduce the bias of the MLE was 

proposed by [7]. Actually, the idea behind his method is that since the parameter estimate may not exist it is 

safer to modify the estimating equations to correct for bias prior to estimation. Let 𝑈∗(𝜃) be the modified score 

function. For the canonical parameter of the exponential family model, the rth component of the modified 

score equation is given by 

 

𝑈𝑟
∗(𝜃) = 𝑈𝑟(𝜃) + 𝐴𝑟(𝜃),                                                                                                                (11) 

 

in which 𝐴𝑟(𝜃) is the rth part of 𝐴(𝜃) = −𝐼(𝜃)𝐵1(𝜃) 𝑛⁄ , 𝑟 = 1, ⋯, dim(𝜃). 𝐵1(𝜃) is denoted here like the 

first order term in the bias expansion on the MLE: 𝐵(𝜃) = 𝐵1(𝜃) 𝑛⁄ + 𝐵2(𝜃) 𝑛⁄ + ⋯. 

Note that the method proposed by [7] was made to apply in the canonical exponential model. However, 

even in functions that are not members of this group was found that the applied of this penalty yields great 

results, as in [16], they applied this method in a bimodal Birbaun-Saunders model. 

In the case of an exponential family in canonical form, the observed information (Fisher’s information) 

does not depend on the data, and it follows that 

 

𝐴𝑟(𝜃) =
𝜕

𝜕𝜃𝑟
{

1

2
log|𝐼(𝜃)|}.                                                                                                               (12) 

 

For functions in the canonical exponential family, the correction of the likelihood function is applied as 

following 

 

𝐿∗(𝜃|𝑋) = 𝐿(𝜃|𝑋)|𝐾|1 2⁄ , 

 

where the penalization term  |𝐾|1 2⁄  is the [17] invariant prior. Equivalently, estimation can be executed 

by maximizing 

 

𝑙∗(𝜃|𝑋) = 𝑙(𝜃|𝑋) +
1

2
|𝐾|.                                                                                                                  (13) 

 

4. OBTAINED RESULTS  
  

In this section it will be showed the application of the Firth’s method to penalize the q-Exponential log-

likelihood function, but to apply this correction it was necessary one modification, that will be presented in the 

following. 
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Under regularity conditions and to large samples, 𝜃~𝑁3(𝜃, 𝐼(𝜃)−1) approximately, where 𝐼(𝜃) is 

Fisher’s (expected) information matrix: 

 

𝐼(𝜃) = 𝐸 [
𝜕(𝜃)

𝜕𝜃

𝜕(𝜃)

𝜕𝜃𝑇
]. 

 

The score function of the q-Exponential log-likelihood function is presented in Eq. (10). In general, is 

easier compute as  𝐼(𝜃) = 𝐸[𝐽(𝜃)], where 𝐽(𝜃) =  −𝜕2𝑙(𝜃) 𝜕𝜃𝜕𝜃𝑇⁄  is the observed information. For the q-

Exponential model, we obtain 

 

𝐽(𝜃) = [
𝐽𝑞𝑞 𝐽𝑞𝜂

𝐽𝜂𝑞 𝐽𝜂𝜂
], 

 

where, 

 

𝐽𝑞𝑞 = −
𝑛

(2−𝑞)2 +
2

(1−𝑞)3
∑ ln (1 −

(1−𝑞)𝑡𝑖

𝜂
)𝑛

𝑖=1 +
2

(1−𝑞)2
∑

𝑡𝑖

𝜂(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1 +

1

(1−𝑞)
∑

𝑡𝑖
2

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1                     (14)                                                                                             

𝐽𝜂𝜂 =
𝑛

𝜂2 +
1

(1−𝑞)
∑ (−

2(1−𝑞)𝑡𝑖

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)

−
𝑡𝑖

2(1−𝑞)2

𝜂4(1−
(1−𝑞)𝑡𝑖

𝜂
)
)𝑛

𝑖=1                                                                      (15) 

𝐽𝑞𝜂 =  𝐽𝜂𝑞 =
1

(1−𝑞)2
∑

(1−𝑞)𝑡𝑖

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1 +

1

(1−𝑞)
∑ −

𝑡𝑖

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)

−
𝑡𝑖

2(1−𝑞)

𝜂4(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1                              (16) 

 

Therefore, how it was presented before, the original idea this method involves the utilization the matrix 

of the expected information (Firth’s information), but in some cases it is not easy to obtain this measure. In 

this cases, it is common to use the matrix of the observed information, which could be seen as an approximation 

of the expected information. 

Table 1 bellow present the results of a Monte Carlo simulation made with the original q-Exponential 

log-likelihood function and with the penalized q-Exponential log-likelihood function for η constant and three 

values of 𝑞. This simulation was made with the computational software R, it was utilized 10000 (ten thousands) 

replications for five sizes of sample (20, 50, 100, 500, 1000) and the numerical method utilized to do the 

maximizations was the Nelder-Mead.  

By analyzing the results showed in the Table 1 is possible verify that was achieved a significant 

improvement with the penalized q-Exponential log-likelihood function, especially for small sizes of samples 

as 20 and 50 observations.  

For 𝑞 = −20 and η = 5 the original q-Exponential log-likelihood function did not yields any good 

estimate for the parameters. Meanwhile the bigger relative bias that the penalized function reached for the 

parameter 𝑞 was -0.5851873 and the bigger relative bias for the parameter η was -0.5817365, i.e. the corrected 

function achieved a bias smaller than 60% for the smallest size of sample, this bias drops to less than 50% 

when the size of sample is of 1000 (one thousand) observations. 
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For 𝑞 = −2 and η = 5 the original function did not produce good results for the sample sizes 20, 50 and 

100 realizations. Actually, for this sample sizes the estimates are very bad. However, for this parameters values 

combination, starting of samples with 500 observations the original q-Exponential log-likelihood function 

starts to yields good estimates for the parameters. For the other hand, for this both true values of parameters, 

the corrected function continued to produce good estimates of the parameters for all sample sizes. But, is 

important make it clear that for great sample sizes (500 and 1000) the original function did produce a little bit 

better results that the penalized function.  

For 𝑞 = 0.5 e η = 5 the results for this combination of parameters were similar at the previous case. 

The original function did produce good estimates for the parameters just for samples with a great number of 

observations (100, 500 and 1000 realizations). And the penalized function did yield very good estimates for 

all the sample sizes, which means that the penalty in the q-Exponential log-likelihood function worked very 

well. The bigger relative bias verified with the corrected function was 0.9290058 for the parameter 𝑞  and 

0.5268211 for the parameter η. Meanwhile, the bigger relative bias that the original function produced was -

9856444 for the parameter 𝑞 and 5731969 for the parameter η. 

 

Table 1: Comparisons with 𝐪 constant 

For 𝑞 = −20 and η = 5 𝑞̂  Rel. Bias  
𝑞̂ 

𝜂̂ Rel. Bias 
𝜂̂ 

Original function, n=20 -141900356 7095017 31963831 6392765 

Penalized function, n=20 -8.296254 -0.5851873 2.091318 -0.5817365 

Original function, n=50 -50594075 2529703 11797129 2359425 

Penalized function, n=50 -8.626906 -0.5686547 2.241547 -0.5516905 

Original function, n=100 -22844008 1142199 5377958 1075591 

Penalized function, n=100 -8.874138 -0.5562931 2.3236 -0.53528 

Original function, n=500 -2213100 110654 525524.8 105104 

Penalized function, n=500 -9.87779 -0.5061105 2.583265 -0.4833471 

Original function, n=1000 -535200.5 26759.03 127240.5 25447.09 

Penalized function, n=1000 -10.76152 -0.4619238 2.796611 -0.4406779 

For 𝑞 = −2 and η = 5 𝑞̂ Rel. Bias  
𝑞̂ 

𝜂̂ Rel. Bias 
𝜂̂ 

Original function, n=20 -98051761 49025880 146483739 29296747 

Penalized function, n=20 -4.498968 1.249484 8.24302 0.648604 

Original function, n=50 -16157679 8078839 25362689 5072537 

Penalized function, n=50 -4.33278 1.16639 8.448655 0.6897309 

Original function, n=100 -1600956 800476.8 2558381 511675.2 

Penalized function, n=100 -4.279655 1.139828 8.536188 0.7072376 

Original function, n=500 -2.839555 0.4197777 6.36099 0.272198 

Penalized function, n=500 -3.618861 0.8094307 7.632871 0.5265743 

Original function, n=1000 -3.231732 0.6158662 7.028491 0.4056982 

Penalized function, n=1000 -3.58282 0.7914099 7.60109 0.520218 

For 𝑞 = 0.5 and η = 5 𝑞̂ Rel. Bias  
𝑞̂ 

𝜂̂ Rel. Bias 
𝜂̂ 

Original function, n=20 -4928221 -9856444 28659849 5731969 

Penalized function, n=20 0.3891576 -0.2216849 7.634105 0.5268211 

Original function, n=50 -24925.44 29591.83 147964.1 -24925.44 

Penalized function, n=50 0.8546313 0.7092627 4.767566 -0.046486 

Original function, n=100 0.3610203 -0.2779594 5.785671 0.1571343 

Penalized function, n=100 0.9645029 0.9290058 4.414194 -0.117161 

Original function, n=500 0.4720099 -0.05598024 5.160208 0.0320416 

Penalized function, n=500 0.6298968 0.2597937 4.972481 -0.005503 

Original function, n=1000 0.4781027 -0.04379465 5.146214 0.0292427 

Penalized function, n=1000 0.4948682 -0.01026362 5.011411 0.002282109 

Source: This research (2017) 
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Table 2 bellow present the results of a Monte Carlo simulation made with the original q-Exponential 

log-likelihood function and with the penalized q-Exponential log-likelihood function for 𝑞 constant and three 

values of η. This simulation was made with the computational software R, it was utilized 10000 (ten thousands) 

replications for five sizes of sample (20, 50, 100, 500, 1000) and the numerical method utilized to do the 

maximizations was the Nelder-Mead.  

For 𝑞 = −2 and η = 50 the original function did not produce good results for the sample sizes 20, 50 

and 100 realizations. For this sample sizes the estimates are very poor. However, for this parameters values 

combination, starting of samples with 500 observations the original q-Exponential log-likelihood function 

starts to yields good estimates for the parameters. For the other hand, for this both true values of parameters, 

the corrected function continued to produce good estimates of the parameters for all sample sizes.  

For 𝑞 = −2 and η = 500, for this combinations of parameters, once again the original q-Exponential 

log-likelihood function just did yields goods results for great size samples (500 and 1000 realizations). And 

once more the penalized function keep to maintain good results even for small size samples (20 and 50 

observations). 

For 𝑞 = −2 and η = 1000, the corrected function remained consistent, i.e. the results obtained with this 

function were still good even for small samples, just as for the others combination of parameters. For other 

hand, the original function just starts to produce good results for samples with at least 500 realizations.  

The results presented in Table 1 and Table 2 prove that the penalized function is consistent and effective 

even for small sizes samples since that it is possible to obtain good results in this cases. For other hand, the 

original function proved to be more effective for big sizes samples. However, when the parameter 𝑞 increasing 

in module, the original function does not yields good results even for big sizes sample, as it is possible to see 

in the Table 1 For 𝑞 = −20 and η = 5, others tests with values of the parameter 𝑞 higher in module were made 

and the results were not good. 

In practice, it is not viable to obtain samples with a big number of realizations, sometimes there are not 

financing to get this or just it is not possible, thus it is possible affirm that the original function is not a good 

choice, because it just showed goods results in specifics cases. Besides that, when the parameter  𝑞 increasing 

in module, the original function does not produce goods results in no case.  
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Table 2: Comparison with 𝛈 constant 

For 𝑞 = −2 and η = 50 𝑞̂ Rel. Bias  
𝑞̂ 

𝜂̂ Rel. Bias 
𝜂̂ 

Original function, n=20 -19770436 9885217 295654300 5913085 

Penalized function, n=20 -3.67971 0.8398551 70.2032 0.404064 

Original function, n=50 -3206861 1603430 50337273 1006744 

Penalized function, n=50 -3.417721 0.7088603 69.99187 0.3998374 

Original function, n=100 -309689.9 154844 4951017 99019.33 

Penalized function, n=100 -3.333458 0.6667288 70.09704 0.4019409 

Original function, n=500 -2.484186 0.2420929 57.70734 0.1541468 

Penalized function, n=500 -3.180338 0.5901688 69.05484 0.3810969 

Original function, n=1000 -2.432521 0.2162605 57.00197 0.1400393 

Penalized function, n=1000 -3.038986 0.5194931 66.96272 0.3392544 

For 𝑞 = −2 and η = 500 𝑞̂ Rel. Bias  
𝑞̂ 

𝜂̂ Rel. Bias 
𝜂̂ 

Original function, n=20 -10294098 5147048 1540086511 3080172 

Penalized function, n=20 -3.634623 0.8173114 695.8656 0.3917312 

Original function, n=50 -1664069 832033.6 261186838 522372.7 

Penalized function, n=50 -3.403819 0.7019093 697.7501 0.3955003 

Original function, n=100 -159733 79865.48 25527798 51054.6 

Penalized function, n=100 -3.322857 0.6614283 699.3281 0.3986562 

Original function, n=500 -2.498385 0.2491925 579.27 0.15854 

Penalized function, n=500 -3.238553 0.6192766 700.2667 0.4005333 

Original function, n=1000 -2.32467 0.162335 552.0839 0.1041677 

Penalized function, n=1000 -3.214191 0.6070956 698.7303 0.3974605 

For 𝑞 = −2 and η = 1000 𝑞̂ Rel. Bias  
𝑞̂ 

𝜂̂ Rel. Bias 
𝜂̂ 

Original function, n=20 -8970900 4485449 2686290200 2686289 

Penalized function, n=20 -3.647204 0.8236021 1394.593 0.3945928 

Original function, n=50 -1409583 704790.3 442743701 442742.7 

Penalized function, n=50 -3.403975 0.7019877 1395.393 0.3953929 

Original function, n=100 -134713.4 67355.71 43027614 43026.61 

Penalized function, n=100 -3.316545 0.6582725 1396.465 0.3964647 

Original function, n=500 -2.506325 0.2531626 1161.087 0.1610866 

Penalized function, n=500 -3.228257 0.6141286 1397.159 0.3971589 

Original function, n=1000 -2.305045 0.1525226 1097.621 0.09762107 

Penalized function, n=1000 -3.212806 0.6064031 1397.085 0.3970854 

Source: This research (2017) 

 

5. CONCLUSIONS 

 
This work proposed correct the q-Exponential distribution, which used to present a problem called 

“monotone likelihood”. This problem was verified when 𝑞 < 1, and in this situation was not possible to obtain 

good parameters estimates for this distribution. 

Once the q-exponential distribution can modelling the three phases of the bathtub curve, it is very 

important be able to obtain good parameters estimates for this distribution. 

In order to solve this problem, it was applied the Firth’s method. This is a method applied directly in the 

log-likelihood function and uses the expected information (Fisher’s information). However, for this work it 

was uses the observed information, once it is not possible to obtain the expected information for the q-

Exponential log-likelihood function. Besides, the Firth’s method was proposed for distributions that belongs 

to canonical exponential family, but previous works showed that it can also work for distributions that does 

not belongs to this group. 
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The correction applied in this distribution produced good results. Even with small samples, e.g., 20 

observations, the penalized function showed acceptable estimates for q and 𝜂, the q-Exponential's parameters. 

Meanwhile, the original distribution just shows good results for big samples, e.g., 500 observations, which is 

unfeasible in practice. Besides, when the parameter q increases in absolute value, the original distribution does 

not yields goods results for any sample size. 

In general, it is possible affirm that the penalization applied in the q-Exponential log-likelihood function 

represents a science progress, once with this change on the function becomes possible fit data sets in what  𝑞 <
1. This is the case in which it has a crescent hazard rate, last phase of the bathtub curve.   
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