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ABSTRACT 

Testing of safety systems is essential to ensure that their probability of failure on demand (PFD) 

is maintained below acceptable limits throughout their lifetime. It is commonly assumed that 

more frequent testing and a shorter interval between tests imply a lower PFD, because test 

results provide information about the functional status of components. Nevertheless, it is also 

well known that tests may induce stresses in the tested components which tend to accumulate 

with time. The traditional models for evaluation of PFD with constant failure rates do not 

capture the damaging effect of the tests. 

In this paper, we derive optimal testing policies under two different scheduling schemes: (i) 

periodic testing with equal intervals between tests, and; (ii) adaptive scheduling, where test 

intervals are allowed to vary throughout the operational cycle. We show that adaptive test 

scheduling with long initial test intervals that gradually decrease as the component accumulates 

damage give a lower average PFD than a periodic testing with constant intervals for the same 

total number of tests.  

 

1. INTRODUCTION 

 

 Testing of safety systems is essential to ensure that their probability of failure on demand 

(PFD) are maintained below acceptable limits throughout their lifetime (see IEC-61508 (2010)). 

It is commonly assumed that more frequent testing, with shorter intervals between tests, implies 

a lower PFD, because test results provide information about the functional status of 

components. Nevertheless, it is also well known that tests may induce stresses in the tested 

components (BSEE, 2015). In fact, some tests may induce levels of stress that over time will 

accumulate and may lead to significant damage to the tested components. This means that, for a 

fixed operational interval, increasing the number of tests, or, equivalently, reducing the intervals 

between tests, may actually increase the average PFD of the safety system within the 

operational cycle. A practical case that called our attention to this problem was the difference of 

opinion between the US Bureau of Safety and Environmental Enforcement (BSEE) and the 

offshore industry regarding the frequency of pressure testing of subsea BOPs during the 

development of the Well Control Rule (BSEE, 2015). While the industry proposed that BOP 

pressure tests be performed every 21 days, as indicated in API 53 (API, 2018), BSEE responded 

that: 

 

”BSEE is not aware, however, of any new data that justifies increasing the 

BOP pressure testing interval for all BOPs from 14 days to 21 days.” 

 

Considering an operational cycle of 5 years for a BOP (recertification at 5-year period) 

established in the Well Control Rule (BSEE, 2015), the variation in the number of pressure tests 

to be performed in that period goes from 130 to 87, respectively for 14 to 21 days pressure test 

intervals. By sticking to the shorter interval, BSEE is assuming that the shorter interval between 

pressure tests ensure a lower PFD for the BOP. But considering the damage induced by the 

tests, is this policy the best one, or are companies testing their BOPs too much? 

 

In Reference (BSEE, 2015) BSEE states that the estimated operational costs to the companies 

due to the frequency of pressure testing jumps from USD150 million for the 21-day policy to 

USD400 million for the 14-day one, a very significant difference by any account. But in this 

paper, we are only concerned with the safety aspects of the problem. It is also important to say 
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that the 14- day interval is also adopted as a requirement by other regulators around the world 

(e.g., Norway PSA (NORSOK, 2013)).  

 

Optimization of test, inspection and repair scheduling is a topic that has been studied 

extensively in different contexts, both analytically and numerically. Kim et al. (1994) evaluated 

optimal test frequency based on the trade-off between the beneficial and adverse effects of 

testing, considering both time related and test related aging of components. Kaio et al. (1994) 

considers optimal non-periodic test scheduling when tests induce immediate failure with a 

prescribed probability. Lapa et al. (1999, 2000) have used a genetic algorithm approach to 

search for time points when it is optimal to perform testing, inspection or intervention, also 

considering aging of standby components (Lapa et al., 2002). The current paper complements 

the above studies, by providing analytical results for both periodic and non-periodic test 

policies, focusing specifically on the gradual damage induced by tests on the tested components. 

We show that the existence of an optimum periodic test interval depends on the nature of the 

degradation process (i.e. how fast the failure rate increases as a function of the number of tests). 

We also show that there always exists an optimal non-periodic strategy such that the benefit of 

testing outweighs the detrimental damage effect. 

 

2. THE MODELS 

The time-dependent probability of failure on demand - PFD(t) - is the probability that the safety 

system is in a failed state when a hazardous demand occurs at time t. We are here focusing on 

the undetected failures during operations, and the purpose of the tests is to uncover the actual 

state of the safety system, and thus to reduce the PFD. The PFD is therefore equal to the 

unavailability of the safety system. The undetected failures are not repaired or rectified when 

they occur (they cannot, since they are not detected); accordingly, PFD(t) is equal to the 

probability that a failure has occurred before t. The general equation for PFD(t) can then be 

written as: 

 
(1) 

 

This equation states that the probability that the safety system has failed at t + dt is equal to the 

probability of it being failed at t, plus the probability of it not being failed at t and then failing 

within the next interval dt. In Eq. (1), (t) is the undetected failure rate. Eq. (1) can be expressed 

as the differential equation: 

 

(2) 

which can easily be solved by direct integration from the start of a test at t = ti to time t: 

 

 
(3) 

We now consider a component that starts out as new (i.e., working condition) at time t0 = 0 

and is subject to N functional test at subsequent time points {t1, t2, … , tN}. We let tN+1 = T be 

the total operational cycle of the component and assume that the failure rate is piecewise 

constant between tests. This means that (t) = i where i means the interval after i tests. 

Furthermore, we will assume that tests are perfect (i.e. all failures are detected) and that any 

failed component is repaired to the condition it was in the interval before the failure was 

detected (i.e. as-good-as-old repair). The latter is a conservative assumption. This means that 

PFD(ti) = 0. To simplify notations, we will let f(t) = PFD(t) in the following. The probability of 

failure on demand at time t ϵ [0; T] is then given by 
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(4) 

 

With_ti = ti+1-ti as the duration between tests, the average PFD in interval i becomes 

 

 

(5) 

 

The average PFD over the interval [0; T] can be computed using Eq. (4): 

 

 

(6) 

We will use this formula repeatedly throughout this paper. 

 

 

2.1 Equal Test Intervals 

We first consider the case where tests are performed at constant intervals of length t =T/(N+1), 

i.e. at times ti = iT/(N + 1), any i ∈{1, 2, …, N}. Then Eq. (6) becomes 

 

(7) 

In the limit of small failure rates, i.e. where i t << 1, Eq.(7) can be approximated to lowest 

order by 

 

(8) 

 

where                            denotes the arithmetic mean of the failure rates over the failed states. 
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2.2 Optimal Test Intervals 

We define optimal test intervals by the set {t1, t2, …, tN} that minimizes the average PFD over 

the operational cycle [0, T]. This amounts to minimizing Eq.(6), which occurs when 

 

 
(9) 

giving the set of equations 
 

 
(10) 

or equivalently 

 

 
(11) 

At the optimal test intervals, we therefore conclude that iti = constant.  
 

Since we see immediately that  so that 
 

 
(12) 

 

where    The corresponding average PFD is given by 

 

 

(13) 

 

In the limit of small failure rates where it <<1, we see that CN becomes large, hence Eq. (13) 

can be approximated to lowest order by 

 

 

(14) 

 

 

where  denotes the harmonic mean over the failure rates. 

Note the similarity in form between Eq.(8) and Eq.(14), where the only difference is the type of 

average over the failure rates. 

 

3. RESULTS 

3.1 Effect of test damage with periodic testing 

In the case where there is no damage from the test, the failure rate i =  is constant. In this 

well-known situation the average PFD follows directly from Eq.(7) as 
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(15) 

where we have introduced the function 
 

 
(16) 

 

Since  is monotonically increasing with x we see immediately that increasing the number of 

tests N will always reduce the probability of failure on demand. 

We now turn to the case where the tests induce damage to the system, addressing the question 

on test frequency for BOPs as a case-in-point. The average PFD over the total test interval 

Eq.(7) now becomes. 

 

(17) 

We note that the asymptotic behaviour of  as N → ∞, depends on the asymptotic 

behaviour of N as N → ∞, i.e.: 

 

 

(18) 

 

This means that, depending on how much the tests affect the failure rate, more tests may either 

improve or reduce the average PFD. In the special case where the failure rate increases linearly 

with the number of tests, the average PFD tends towards a constant and finite value (T). 

To be specific we will consider two degradation models to illustrate the point above. In the 

Additive Test-Step Varying (ATSV) model (Oliveira et al., 2016) the failure rate is increased by 

a fixed amount at every test and remains constant in-between tests. The model can, loosely 

speaking, be said to represent ”linear damage”, as the damage from any test is the same. The 

failure rate after test i of the ATSV models is 

 

 
(19) 

 

Here a is a constant parameter assumed positive. In this model, additional tests will in general 

reduce the PFD. From Eq. (18) we see that the PFD will ultimately approach the finite limit 

(aT0) for large number of tests and cannot be reduced any further by additional testing. 

The second model we will consider is the Multiplicative Test-Step Varying (MTSV) model (L. 

F. Oliveira and J. Domingues, 2016; G. A. Vale, 2018) where the damage from the test is not 

additive like in the ATSV model, but rather multiplicative. The model can, loosely speaking, be 

said to represent ”compound damage”, as the damage from an early test is much smaller than 

damage from a later test. The failure rate after test i of the MTSV models is 
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(20) 

In this model, additional tests will not necessarily reduce the PFD. Initially, the PFD will be 

reduced by more testing, as the test damage is initially small. However, after sufficiently many 

tests, the damage has accumulated into a sufficiently large failure rate so that further testing will 

increase the PFD. From Eq. (18) we see that the PFD upon further tests will approach 1, i.e. a 

certain failure. 

 

A similar curve as that of the MTSV model, with a minimal value of the average PFD, has also 

been found in the work of Srivastav et al. (2018). The minimal value of the PFD for the MTSV 

model can be determined for the MTSV model. To illustrate the occurrence of the minimum, we 

use, for simplicity, the linear approximation from Eq.(5), which for the MTSV model reads 

 

(21) 

The optimum occurs whenever d = dfequal/dN = 0, which for large N can be calculated from the 

first few terms in the expansion as 

 

(22) 

independent of both 0 and T. Hence, any additional testing beyond this maximum number of 

tests will then increase the PFD. As a check on the linear approximation, we see that at the 

minimum N
max = e2 0, so the linearisation will in general still be valid at the minimum PFD. 

In Figure 1 we have plotted the PFD for both the ATSV and MTSV model for comparison. We 

see clearly that in the ATSV model the PFD is declining towards a constant value (aT0) as the 

number of tests grow. On the contrary, the MTSV model displays a minimum for a given 

number of tests and then starts to rise again upon further testing. The maximum number of tests 

before the PFD starts to rise again is well approximated by Eq. (22). 
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3.2 Effect of optimal test intervals 

We now consider the case of optimal test intervals as determined in Sec 2.2. We note from 

Eq.(12) that for constant failure rates, the optimal test interval is also constant, with ti = t = 

T/(N + 1). However, if the failure rate is affected by the tests, the optimal test schedule is not 

equipartitioned. Stated differently, periodic testing is not optimal when there is damage caused 

by the tests. In Figures 2 and 3 we have plotted the average PFD for both the equipartitioned 

case and the optimal test interval case, for both the ATSV and MTSV models respectively. We 

immediately see two distinct features: (i) The PFD is always lower for the case with optimal 

spacing, and; (ii) the PFD is always reduced with more tests. The first feature is expected and 

can also easily be seen by comparing the two expressions in Eqs.(8) and (14) noting that we 

always have N;harmonic ≤ N;arithmetic. 

 

 
The second feature is more surprising. To better understand this feature we note that at optimal 

test intervals the average PFD in interval i found in Eq.(2) turns out to be identical in all 

intervals: 

 

(23) 

Furthermore, they are equal to the average PFD over the entire interval found in Eq.(10). So, for 

optimal test intervals, we have 

 

(24) 

 

Since the interval PFD and the total interval PFD are identical, we understand easily why 

adding a test always will reduce the PFD: If you add a next interval tN+1 beyond T the total 

interval PFD will remain constant. If we now ”compress” these N +1 tests within the original T 

interval, all intervals will be shorter and all interval-PFD will be reduced. The overall PFD will 

consequently also be reduced. Moreover, we see that since CN is a monotonically increasing 

function of N, the asymptotic behaviour of the PFD in Eq. (24) is 

 

 
(25) 

Thus, unlike the case with equal test intervals, the average PFD will always decrease towards 

zero with more tests if the test times are selected optimally. 
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4. DISCUSSION 

From the findings for the case with equipartitioned tests (periodic testing), we saw that 

increasing the number of tests did not necessarily reduce the PFD. Crucially, it depended on the 

damage process in question. Thus, having a good understanding on the stress mechanisms 

related to the tests becomes paramount in deciding on the test interval duration in the 

equipartitioned case. The latter is needed to inform the decision on an optimal test schedule for 

BOPs as presented in the introduction. The number of tests corresponding to a 2 week or 3 week 

test interval for a 5 year cycle for a BOP was 130 and 87, respectively. From the optimal 

number of tests in the multiplicative model, we see that this corresponds to damage parameter   

a = 0.023 and a = 0.015, respectively. These represent small damage effects, making the 

effect exhibited by the model more likely to represent real observable effects. The different 

features from the different damage models observed in the case of equal test intervals is not 

present in the optimal test interval. 

 

In the latter case, the PFD is always reduced by additional tests, irrespective of the damage 

mechanism involved. This makes this test strategy more robust towards the physical features of 

the damage mechanisms. 

 

The optimal test interval approach can easily be implemented in practical applications. In this 

optimal regime both the average and peak PFD in every interval is constant. This suggest a 

practical way to schedule test optimally during operations, when knowledge from previous test 

make us able to better determine the current failure rate of the actual components in use: After 

each test, simply schedule the next test when the PFD reaches the same PFD value as when the 

current test was performed. 

 

We also note that in the optimal test interval strategy, the average PFD remains constant in each 

interval and thus throughout the entire campaign. From a safety perspective, this is in itself 

attractive as it avoids the traditional case where it is expected that failures occur more frequently 

as the campaign unfolds. A challenge with the optimal strategy is, however, that as the failure 

rate grows, the inspection interval gets shorter, and at some stage it becomes impractical to test 

too often. From Eq.(12) we can deduce that 

 

(26) 

However, even in such cases it may be possible to find suboptimal test schedules that are 

practical to implement and give a lower PFD than obtained with constant test intervals. 

This challenge occurs because the total number of tests is constant and we optimise the test 

intervals, resulting in shorter and shorter test intervals towards the end of the campaign. There 

is an alternative approach that circumvents this challenge. If we instead of keeping the number 

of tests constant, require the PFD to be the same when going from periodic to optimal schedule, 

we have instead 

 
(27) 

Here Nopt is in general smaller than N, as can be observed from Figures 2 and 3. To illustrate 

this, we use the linear approximations in Eq.(8) and Eq.(14), from which it then follows that 

 
(28) 

From this one may easily calculate Nopt for a given N. We illustrate this in Figure 4 for the 

ATSV and MTSV degradation models. As an alternative to a periodic test schedule with N tests 

one may therefore use optimal test spacing with only Nopt tests and still keep the average PFD 

for the entire interval at exactly the same level. 
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5. CONCLUSION 

We have shown in this paper that tests may induce damage to the tested components that may 

outweigh their usual reduction of the average PFD. Using constant test intervals it is shown that, 

depending on the degradation mechanism/model, there may exist an optimal number of tests, 

i.e., a number of tests that results in the lowest value of the average PFD over the whole 

operational period. With the additive model (ATSV), where the degradation is linear in the 

number of tests, the degradation caused by the test is exactly compensated by the reduction of 

the test interval, leading to convergence of the average PFD at a finite nonzero value. More 

testing always reduces the PFD if the degradation mechanisms is slower than linear in the 

number of tests, and if the degradation is faster than linear (e.g. MTSV model) the detrimental 

effect of degradation will eventually dominate the positive effects of performing tests, such that 

an optimal number exists. However, we have also shown that the optimal way to test is not the 

use fixed periodic test intervals, but to adopt an adaptively changing interval which decreases as 

the failure rate increases due to test induced degradation. Using this optimal adaptive test 

scheduling, the average PFD always decreases when more tests are added within a fixed 

operational lifecycle of the equipment. 

 

While this paper does not answer what the optimal test strategy is for a specific system such as a 

BOP, we conclude that understanding the impact of testing on component degradation is 

important for coming up with good test strategies. 
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