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ABSTRACT In this paper, we propose modeling for a single repairable system with a hierarchical structure
under the assumption that the failures follow a nonhomogeneous Poisson process (which corresponds to
minimal repair action) with a power-law intensity function. The properties of the new model are discussed in
detail. The parameter estimators are obtained using the maximum likelihood method. A corrective approach
is used to remove bias with order O(n−1), and the respective exact confidence intervals are proposed. A
simulation study is conducted to show that our estimators are bias-free. The proposed modeling is illustrated
via a toy example on a butterfly valve system, an example of an early-stage real project related to the traction
system of an in-pipe robot, and also a real example on a blowout preventer system.

INDEX TERMS
Bias correction, Competing risks, Hierarchical systems, Maximum likelihood estimation, Parametric
statistics, Power-law process, Reliability engineering

I. INTRODUCTION

THE presence of repeated recurrences of an event of
interest often arises in areas such as manufacturing,

software development, medical applications, social sciences,
and risk analysis, among others. In reliability engineering,
when a complex system such as supercomputers, airplanes or
cars is included in a study, several unexpected failures may be
exposed by different defects or weaknesses in the products’
design, manufacturing, operation, maintenance, and manage-
ment [1]. Models with this feature are traditionally referred to
as competing risks, or equivalently, a system with p compo-
nents connected in series. A single component failure results
in total system failure.

Recently, the availability evaluation of repairable systems
with multiple failure modes is at the center of attention due to
the broad application in engineering. According to the com-
peting risks framework, a series system fails by the earliest
occurrence of failure modes. Therefore, in this paper, we

utilized a model for components, whose failures happen due
to one of the series competing failure mechanisms, whereby
each of them acts related to the system independently.

A system can be broken down into several sub-systems,
and sub-sub-systems compose the sub-systems in a hierarchi-
cal form until the elements cannot or are not worthy of being
divided. The system’s hierarchies can help engineers to better
understand the relationships between components and their
importance and functions. They can further help engineers to
determine the role and acceptable damaging degree of each
part of the structure and their influences on the whole system
under various external forces and effects [2].

Thus, structuring a problem according to a hierarchy can
help to increase accuracy and facilitate useful analysis of fail-
ure factors. Note that the event of interest at the system level
is expected to happen at its earliest occurrence. Therefore, a
system can be anticipated to follow a competing risks model.
As an example given by Liu et al. [3], mechanical devices
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(e.g., gear pair and crank train) are always under multiple
failure modes (including fracture, corrosion and wear), which
compete with each other so that when one kind of failure
happens, the device is invalid and other failure modes have
no chance to occur anymore.

The components under consideration are repaired upon
failure but are also preventively maintained. Thus, the excel-
lent books by Crowder [4] and Pintilie [5], among others,
motivate the need for accounting for competing risks in
reliability and survival applications using several examples
in industrial statistics and health sciences. More recently,
Langseth and Lindqvist [6] recorded cumulative service
times of a component spanning over 1,600 time units, then
marking each failure with its specific causing mode. In this
case, the causes were categorized into two broad groups, each
with several specified sub-causes. Tuli et al. [7] analyzed
repeated shunt failures in infants diagnosed with hydro-
cephalus, where the failures are known to occur due to a
variety of causes.

In this paper, the focus is placed on failure data from
repairable systems. Thus, solid modeling and analysis of
this data provide equipment operators for better maintenance
activities. In the repairable system literature, it is often
assumed that failures occur following a nonhomogeneous
Poisson process (NHPP) with power-law intensity. The re-
sulting process is usually referred to as the power-law process
(PLP). Proposed by Crow [8], the PLP is convenient because
it is easy to implement, flexible, and the parameters have
valuable interpretation ( [9], [10]). In the literature, the PLP
has been widely used in modeling software reliability [11],
reliability growth [12], repairable systems ( [9], [13], [14]),
etc. Appropriateness of the PLP for a particular dataset can
be verified either by graphical methods, such as the Duane
plots [15] and modified total time on test (TTT) plots [16],
or by formal hypothesis tests ( [17], [18]). Regarding clas-
sical inference for the PLP, see, e.g., Ascher and Feingold
[13] or Ridgon and Basu [19]. Bayesian inference has been
considered, among others, by Bar-Lev et al. [20] and Guida
et al. [21]. Along these lines, Oliveira et al. [22] introduced
an orthogonal parametrization of the PLP, which simplifies
both the analysis and interpretation of the results. The most
commonly used models for repairable systems assume either
perfect repair (renewal process models) or minimal repair
(NHPP models).

The main aim of this paper is to propose a hierarchical
model for a repairable system subject to several failure modes
(competing risks). Under minimal repair, it is assumed that
each failure mode has a power-law intensity. Hence, we
develop a new PLP model with a minimal repair under
competing risks, which generalizes the model presented in
Somboonsavatdee and Sen [23]. Furthermore, we discuss
the inferential procedure for the parameters of the proposed
model using the maximum likelihood estimators (MLEs),
as well as the asymptotic confidence intervals based on the
MLEs. Since the sample size is usually small, due to the
problem of rare yet adverse failures in industrial scenarios

(e.g., in aerospace, nuclear and petrochemical industries) that
causes limited failure data availability, we may obtain biased
estimators and unreliable asymptotic confidence intervals. To
overcome this problem, we suggest a corrective approach to
obtain unbiased estimators for the model parameters. Addi-
tionally, we discuss how to derive exact confidence intervals
based on these unbiased estimators.

The paper is organized as follows. In Section II, we give
some basic concepts about counting processes, repairable
systems, and competing risks models. This section also
presents the framework of recurrent competing risks for the
minimal repair model. In Section III, we present a new
statistical model to analyze single repairable systems with a
hierarchical structure under the assumption that the repairs
are minimal with a PLP intensity and also in the presence of
competing risks. In Section IV, we discuss classical inference
for the model parameters through the MLEs and asymptotic
confidence intervals and also perform a simulation study
to investigate their properties. In Section V, we develop
improved estimators (bias-corrected MLEs), as well as exact
confidence intervals for the model parameters, whose perfor-
mances are again evaluated through a simulation study. In
Section VI, we illustrate our proposed methodology using
simulated reliability data of butterfly valves (Section VI-A),
reliability data based on an in-pipe robot traction system
design information (real project in its early stage) (Section
VI-B), and real reliability data of blowout preventer systems
(Section VI-C). Finally, in Section VII, we conclude the
paper with some final remarks and suggestions for work.

II. LITERATURE REVIEW
In this section, we briefly discuss the literature related to
the failure analysis of a single repairable system with the
particular assumptions that the repairs are minimal with a
PLP intensity, and subject to failure due to competing risks.
We also consider an orthogonal reparametrization of the PLP
model, which enables us to obtain a likelihood function
whose parameters are independent with desirable properties.

A. NONHOMOGENEOUS POISSON PROCESS
Let us suppose a repairable system with a single cause of
failure, where N(t) denotes the number of failures before
time t, and N(a, b] = N(b) − N(a) denotes the number
of failures in the time interval (a, b]. In turn, a NHPP with
intensity function λ(t), t ≥ 0, is a counting process with
independent increments, and we have

λ(t) = lim
∆t→0

P (N(t, t+ ∆t] ≥ 1)

∆t
.

The mean of the Poisson distribution for the random variable
N(t), at time t, is denoted as Λ(t) =

∫ t
0
λ(s)ds. A flexible

parametric form for the intensity function is given by

λ(t) =

(
β

µ

)(
t

µ

)β−1

, (1)
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where µ, β > 0. In this case, the NHPP represents a PLP with
mean function

Λ(t) = E[N(t)] =

∫ t

0

λ(s)ds =

(
t

µ

)β
.

The scale parameter µ is the time for which we expect to
observe only one event. In turn, β is the elasticity of the mean
number of events with respect to time [22].

Notice also that (1) is an increasing (decreasing) function
in t for β > 1 (β < 1). In this case, the PLP can
reflect the possibility of improvement or deterioration of the
system over time. It is worth noting that, when β = 1, the
intensity function (1) is constant, and the PLP reduces to a
homogeneous Poisson process.

B. MINIMAL REPAIR MODEL
A major challenge when modeling repairable system data is
how to consider the effect of a repair action taken imme-
diately after a failure has occurred. It is usually supposed,
for the sake of simplicity, that the repair actions are instan-
taneous. However, it is not suitable for many real systems.
Therefore, the most investigated assumptions are either min-
imal or perfect repair at failures. In the former, it is assumed
that the repair action after a failure restores the system (i.e.,
the intensity) to the same state as it was before the failure,
e.g., by replacing a failed minor component (flat tire) of a
large composite system (car); while in the latter, the repair
action leaves the system as if it was new, e.g., via replacement
of a failed system (an engine with a broken connecting rod)
by a brand new one [24]. According to the engineering
literature, these repair or maintenance actions are often called
ABAO (“as bad as old”) and AGAN (“as good as new”),
respectively ( [25], [26], [27], [28], [29]). However, more
complex models suppose that the repair effect lies between
ABAO and AGAN (i.e., the failure intensity is reduced to a
level between ABAO and AGAN). These models are known
as imperfect repair models, but they are not considered here
(see, e.g., [30]).

In fact, the repairable system model for the failure data will
be implemented according to NHPP under the assumption
of minimal repair. Furthermore, based on the time truncation
design, the likelihood and corresponding log-likelihood func-
tion for a collection of failure data up to time T , are expressed
as

L(β, µ | n, t) =
βn

µnβ

(
n∏
i=1

ti

)β−1

exp

{
−
(
T

µ

)β}
and

`(β, µ | n, t) =n log(β) + (β − 1)
n∑
i=1

log(ti)

−
(
T

µ

)β
− nβ log(µ),

respectively, where we assume that for n ≥ 1, failures are
observed at times t1 < t2 < · · · < tn < T (see, e.g., [19]).

The MLEs of β and µ, which are both biased, can be written
as

β̂ =
n∑n

i=1 log
(
T
ti

) and µ̂ =
T

n1/β̂
. (2)

Since the MLEs (2) suffer from bias, and inadequate
confidence intervals for small samples, several studies have
been performed to overcome these drawbacks. Some further
discussions are given in Section V.

There is always a concern about how to determine the
confidence intervals under the classical inference. For the
sake of illustration, Rigdon and Basu [19] present the con-
fidence interval for the scale parameter. The results showed
that such an interval has no simple interpretation. Moreover,
the authors found that the usual methodologies result in very
long intervals. In turn, in some cases, the pivotal quantity,
which is used to derive the aforementioned classical intervals,
does not exist, or it is difficult to be obtained. Bain and
Engelhardt [31] extensively investigated confidence intervals
for the scale parameter. The outcome of their research has
shown that due to the non-existence of the pivotal quantity
in the setting of time truncated data, finding confidence
intervals for the scale parameter becomes difficult. Despite
the extensive efforts, in most cases, the approaches still have
limitations. For instance, Gaudoin et al. [32] studied the in-
terval estimation for the scale parameter according to the PLP
model. They used the Fisher information matrix to derive
asymptotic confidence intervals, while several constraints
have been reported on their results. Wang et al. [33] consid-
ered a more sophisticated approach to obtain a generalized
confidence interval for the scale parameter under some usual
assumptions. Furthermore, Somboonsavatdee and Sen [23]
have shown methods to obtain the frequentist confidence
intervals for the scale parameter under competing risks.

Oliveira et al. [22] suggested reparametrizing the PLP
intensity in terms of β and α, where

α = E[N(T )] =

(
T

µ

)β
.

In this case, the likelihood function is given by

L(β, α | n, t) = cβne−nβ/β̂αne−α

∝ γ
(
β | n+ 1, n/β̂

)
γ (α | n+ 1, 1) ,

where c =
∏n
i=1 t

−1
i and γ(x | a, b) = baxa−1e−bx/Γ(a),

for x, a, b > 0, is the probability density function of a gamma
distribution with shape parameter a and scale parameter b. It
is worth mentioning that β and α are orthogonal parameters,
which play an important role for Bayesian inference (see,
e.g., [34]).

C. COMPETING RISKS
In reliability theory, the most commonly used system config-
urations are series, parallel, and series-parallel. Particularly,
components in a series system are connected so that the fail-
ure of one of all components results in the system failure. For
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example, Figure 1 illustrates the fault tree analysis (FTA) of
the system 1, . . . , p. A series system is known as a competing
risks model because its failure can be classified as one of the
p possible risks (or failure modes), which compete with each
other to occur first and cause the system failure. Competing
risks can provide a complete analysis of the probabilistic
behavior of failures as many other methodologies presented
in the literature. However, competing risks has an additional
feature addressing not only failure times but also their causes
through a pair of observations. Furthermore, the competing
risks model involves the pair of observations (t, δ), where
t > 0 denotes the failure time, while δ is the indicator of the
component that failed.

In order to understand the competing risks framework for
investigating repairable systems, a single system would be
to consider successive failures at calendar time 0 < t1 <
. . . < tn < T . Let us suppose that failures happen from
an underlying competing risks structure, meaning that the
system fails by the earliest occurrence of one of p exclusive
failure modes. In this case, it is generally possible to observe
the failure mode δ(ti) at the failure time ti. And for the
system level, let us denote {N(t), t > 0} the cumulative
failure counter. In fact, if Nj(t) represents the counting
process corresponding to the j-th failure mode, it is easy to
demonstrate that N(t) =

∑p
j=1Nj(t). The cause-specific

intensity function of this process is

λj (t; δ(t)) =

lim
∆t→0

P (δ(t) = j,N(t+ ∆t)−N(t) = 1 | N(s), 0 ≤ s ≤ t)
∆t

,

(3)
for j = 1, . . . , p.

According to equation (3), the time and the failure mode
are stochastically independent if and only if λ1(t), . . . , λp(t)
are proportional to each other, giving a simple extension of
a similar result from the competing risks literature in failure
time modeling of non-repairable systems.

As pointed out by many works in the literature, com-
plex repairable systems are mostly considered under the
assumption of stochastic independence, which is based on
the physically independent functioning of components (see,
e.g., [35], [4], [36] and [37]). It is essential to mention that
the current paper is also based on this common assumption
of independent risks, or equivalently, independent failure
modes.

D. MODELING MINIMAL REPAIR UNDER COMPETING
RISKS
Let us assume that the system is observed up to time T , and
that the adopted model is reparametrized in terms of βj and

αj = E[Nj(T )] =

(
T

µj

)βj

,

where Nj(.) is the j-th cause-specific counting process, for
j = 1, . . . , p. This implies that βj and αj are orthogonal
parameters.

A common strategy is to assume that the components
of the repairable system under investigation can implement
different operations, which are subject to different kinds of

failure. Let us consider p failure modes, which at each failure
are denoted by δ(t) = j, for j = 1, . . . , p (in the sequel,
we will suppress the explicit dependence of δ on failure time
t for brevity). Thus, if n failures are observed in the time
interval (0, T ], then we have the data (t1, δ1), . . . , (tn, δn),
where 0 < t1 < · · · < tn < T are the system failure times,
and the δi’s indicate the j-th failure mode associated with the
i-th failure time, for i = 1, . . . , n.

Let us consider again the counting process Nj(t) with
behavior according to the cause-specific intensity function

λj(t; δ) = lim
∆t→0

P (δ = j,N(t, t+ ∆t] ≥ 1)

∆t
.

Consequently, N(t) =
∑p
j=1Nj(t), which is the global sys-

tem failure counting process, can be seen as a superposition
of NHPPs whose intensity function is given by

λ(t; δ) =

p∑
j=1

λj(t; δ).

The corresponding cause-specific and overall cumulative in-
tensities are given, respectively, by

Λj(T ) =

T∫
0

λj(u; δ) du and Λ(T ) =

p∑
j=1

Λj(T ).

Under the assumption that the failures from the j-th cause
follow a NHPP with intensity function (1), we can write the
cause-specific intensities as

λj(t; δ) =

(
βj
µj

)(
t

µj

)βj−1

and

Λj(T ) =

(
T

µj

)βj

= E[Nj(T )],

for j = 1, . . . , p.

III. HIERARCHICAL COMPETING RISKS MODEL
In this section, we propose to analyze failure data represent-
ing events from a single repairable system studied under the
parametric framework of a PLP that is subject to hierarchi-
cal competing risks. It consists of a generalization of the
work done by Somboonsavatdee and Sen [23] for the cases
where there is the presence of secondary failure causes (sub-
systems or sub-trees’ branches), as illustrated in Figure 1.
The hierarchical competing risks problem/structure can also
be represented by a block diagram showing a nested series
system, where the sub-systems (and also the systems) are
connected in such a way that the failure of a single sub-
system (or component) results in the corresponding system
failure and, consequently, in the whole system failure (see
Figure 2).

The hierarchical competing risks model’s data consist of
3-tuples (t, δ, ψ), where t > 0 denotes the failure time, δ is
the indicator of the leading failure cause (system), and ψ is
the indicator of the sub-cause (sub-system).
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General System

failures

System 1

failures

System p

failures
...

Sub-
system n1

... Sub-
system 1

Sub-
system nj

... System j

failures

... ...Sub-
system 1

jj

jj

j1

j1

Sub-
system 1

Sub-
system np

1 j p

1.1 1.n1 j.1 j.nj p.1 p.np

FIGURE 1: The general system structure (FTA) considering our proposed hierarchical competing risks model.

FIGURE 2: Block diagram for a nested series system with 2, 3 and 2 series sub-systems (or components) within series systems
1, 2 and 3, respectively.

Then, our proposed model for failure analysis can be
formulated as follows. First, we assume that the failures from
a sub-system k of a system j follow an NHPP with intensity
function given by

λjk(t; δ, ψ) =

(
βjk
µjk

)(
t

µjk

)βjk−1

, (4)

for j = 1, . . . , p, and k = 1, . . . , nj , with nj being the
number of sub-systems for the j-th system; µjk > 0 and
βjk > 0 are, respectively, the scale and shape parameters.

It follows that

λ(t) =

p∑
j=1

nj∑
k=1

λjk(t; δ, ψ) (5)

is the hazard function at time t. The sub-system-specific
cumulative intensity is

Λjk(T ) =

(
T

µjk

)βjk

. (6)

Here, we assumed that the failure causes related to the sub-
systems are independent, therefore we expect that the failures
may occur at different times. Nevertheless, if the failure of
two or more sub-systems happens occasionally at the same
time, the sub-system-specific cumulative intensity for each
sub-system can be calculated from (6), hence the intensity
function (5) can be computed in the presence of multiple
failures at the same time.

It is seen from (5) that Λ(T ) =
∑p
j=1

∑nj

k=1 Λjk(T ) is the
cumulative hazard function at time T . Thus, we have that the
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reliability function is given by

R(T ) = exp {−Λ(T )} = exp

−
p∑
j=1

nj∑
k=1

Λjk(T )

 , (7)

while the sub-system-specific reliability function is

Rjk(T ) = exp {−Λjk(T )} . (8)

Then, similarly as in Section II-D, we consider that the
sub-system’s lifetime is observed up to time T and we
reparametrize our model in terms of βjk and

αjk = E[Njk(T )] =

(
T

µjk

)βjk

, (9)

where Njk(.) is the j-th system and k-th sub-system-specific
counting process.

IV. INFERENCE
In this section, we describe classical inference for the model
that we introduced in Section III. The MLEs and Fisher in-
formation matrix, which is used for estimating the asymptotic
variances of the MLEs, are presented here.

Given the common (but sometimes unrealistic 1) assump-
tion that the failure modes act independently and are mutually
exclusive, the classical inference for the proposed model is
conducted using the likelihood function, or equivalently, the
log-likelihood function, which are defined, respectively, as
follows:

L(θ | t, δ, ψ) =

n∏
i=1

p∏
j=1

nj∏
k=1

[λjk(ti; δi, ψi)]
I(δi=j,ψi=k)

exp

−
p∑
j=1

nj∑
k=1

Λjk(T )


(10)

and

`(θ | t, δ, ψ) =

n∑
i=1

p∑
j=1

nj∑
k=1

I(δi = j, ψi = k)×

log (λjk(ti; δi, ψi))−
p∑
j=1

nj∑
k=1

Λjk(T ),

(11)
where θ =

(
β11, . . . , βpnp

, α11, . . . , αpnp

)
denotes the gen-

eral parameter vector; λjk(ti; δi, ψi) and Λjk(T ) are given
by (4) and (6), respectively; and I(δi = j, ψi = k) is
an indicator function. Before going further, it is important
to mention again that our model is a generalization of the
work by Somboonsavatdee and Sen [23], which estimates
the PLP in the presence of competing risks. However, our
model has an additional hierarchical structure, and thus the

1As pointed out by Meeker and Escobar [38], it is possible that the
failure of one component may either degrade or improve the reliability of
other components, thus leading to either a positive or negative correlation
between failure times in different system’s components. Moreover, when this
dependence exists, it is usually positive, since short (long) failure times of
one mode tend to go with short (long) failure times of another.

proposed estimators require a comprehensive investigation to
be performed.

The MLEs can be obtained by maximizing the log-
likelihood function (11). After some algebraic manipulation,
such estimators can be written as

β̂jk =
njk∑n

i=1 log
(
T
ti

)
I(δi = j, ψi = k)

(12)

and
α̂jk = njk, (13)

where njk denotes the total number of failures due to the
subcause k of the major cause j.

Since from (9), E[Njk(T )] = αjk, we have that the Fisher
information matrix can be expressed as

I(θ) =Diag(α11β
−2
11 , . . . , α1n1β

−2
1n1

, . . . , αp1β
−2
p1 , . . .

, αpnp
β−2
pnp

, α−1
11 . . . . , α

−1
1n1

, . . . , α−1
p1 . . . . , α

−1
pnp

),
(14)

where Diag(·) is a κ × κ diagonal matrix, with κ =
2
∑p
j=1 j × nj . The MLEs have a closed-form expression

and unique solution, consequently from the Central Limit
Theorem, they are asymptotically normally distributed with
a multivariate normal distribution, which can be given by

θ̂ ∼ Nκ
(
θ, I−1(θ)

)
as njk →∞. (15)

A. SIMULATION STUDY
We conducted a simulation study to investigate the con-
sistency and efficiency of the MLEs presented in equa-
tions (12) and (13). To that end, we used two criteria:
the bias and mean square error (MSE), which are given,
respectively, by Bias

(
θ̂w

)
= (1/M)

∑M
m=1

(
θ̂

(m)
w − θw

)
and MSE

(
θ̂w

)
= (1/M)

∑M
m=1

(
θ̂

(m)
w − θw

)2

, for
w = 1, . . . , κ, where M = 50, 000 is the number
of Monte Carlo replications and θ = (θ1, . . . , θκ) =(
β11, . . . , βpnp

, α11, . . . , αpnp

)
represents the parameter

vector. Moreover, θ̂(m)
w denotes the MLE of θw obtained from

sample m, for m = 1, . . . ,M .
By this approach, it is expected that good estimators have

both bias and MSE close to zero. In turn, reasonable confi-
dence intervals, which are produced here using the asymp-
totic normality of the MLEs (as given in equation (15)), are
expected to be short with coverage probabilities close to the
nominal value of 95%. In this work, all computations and
simulations were performed using the R software (R Core
Team, 2019).

In what follows, we present the results for a single system
subject to 2 failure causes each with 3 sub-causes (Scenarios
1, 2 and 3), or 3 failure causes with 2, 3 and 2 sub-causes,
respectively (Scenarios 4, 5 and 6), both under the assump-
tion that the component system is observed in the fixed
time interval (0, T ], where T = 20. Hence, four different
scenarios (described below), with different parameter values
in order to yield distinct sample sizes, are examined.
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• Scenario 1: β11 = 0.8, α11 = 3.30, β12 = 0.5, α12 =
2.23, β13 = 1.0, α13 = 7.0, β21 = 1.0, α21 =
4.0, β22 = 1.0, α22 = 2.0, β23 = 1.1, α23 = 2.0;

• Scenario 2: β11 = 1.2, α11 = 14.56, β12 = 0.9, α12 =
10.37, β13 = 1.0, α13 = 12.0, β21 = 1.0, α21 =
4.0, β22 = 2.0, α22 = 20.0, β23 = 1.2, α23 = 10.92;

• Scenario 3: β11 = 1.2, α11 = 10.92, β12 = 1.1, α12 =
13.49, β13 = 1.2, α13 = 12.74, β21 = 1.5, α21 =
17.89, β22 = 1.8, α22 = 21.97, β23 = 1.6, α23 =
12.07;

• Scenario 4: β11 = 2.0, α11 = 8.0, β12 = 0.4, α12 =
4.97, β21 = 0.6, α21 = 12.07, β22 = 0.7, α22 =
12.21, β23 = 1.5, α23 = 8.94, β31 = 0.4, α31 =
9.94, β32 = 0.8, α32 = 7.69;

• Scenario 5: β11 = 0.8, α11 = 4.39, β12 = 0.8, α12 =
8.24, β21 = 0.6, α21 = 9.05, β22 = 0.3, α22 =
4.67, β23 = 1.1, α23 = 8.10, β31 = 0.5, α31 =
8.94, β32 = 1.3, α32 = 7.37;

• Scenario 6: β11 = 2.0, α11 = 8.00, β12 = 1.1, α12 =
40.48, β21 = 1.2, α21 = 72.82, β22 = 1.1, α22 =
40.48, β23 = 1.5, α23 = 8.94, β31 = 1.1, α31 =
80.96, β32 = 1.2, α32 = 25.49.

Due to space constraints, the results are reported only for
these six scenarios. However, similar findings are obtained
for other parameter choices.

By considering the well-known results regarding NHPPs
[19], and also from the assumption that the failure modes
are independent, we can generate the failure times, for each
Monte Carlo replication, according to the following steps.

1. For the k-th sub-system of the j-th system, j =
1, . . . , p, k = 1, . . . , nj , generate a random number
njk ∼ Poisson (Λjk(T ));

2. For the k-th sub-system of the j-th system, j =
1, . . . , p, k = 1, . . . , nj , let the failure times be
t1,j,k, . . . , tnjk,j,k, where ti,j,k = T U

1/βjk

i,j,k and
U1,j,k, . . . , Unjk,j,k are the order statistics of a random
sample of size njk from a Uniform(0, 1) distribution;

3. Finally, in order to obtain the data in the form
(ti, δi, ψi), let the ti’s be the set of ordered failure times
and make δi equal to j and ψi equal to k according to
the corresponding failure mode and subcause, respec-
tively (i.e., set δi = 1 and ψi = 1 if ti = th,1,1 for
some h, or δi = j and ψi = k depending on the failure
mode and subcause).

As shown in Tables 1 and 2, the bias of the MLEs varies
depending on the αjk parameter values, i.e., the mean num-
ber of failures. If the values of αjk are small, the bias of β̂jk
is considerably higher than expected, as well as the MSEs.
This result is due to the systematic bias that the MLE of
βjk possesses. On the other hand, the maximum likelihood
estimates of the αjks are close to the true values, which is
expected since α̂jk is an unbiased estimator of αjk. Note
also that while the coverage probabilities of the nominally
95% confidence intervals (CP95%) for the βjks seem to be
satisfactory (i.e., they are close to 0.95), the CP95% for

the αjks are far from the assumed levels. This difference
may occur because we are considering that the asymptotic
normality of the MLEs was achieved. However, this may not
be true, returning inadequate confidence intervals. In order to
overcome such a problem, in the next section, we will discuss
an improved estimator for βjk, as well as exact confidence
intervals for both αjk and βjk.

V. BIAS CORRECTION AND IMPROVED CONFIDENCE
INTERVALS
Cox and Snell [39] showed that, when the sample data are in-
dependent (although not necessarily identically distributed),
the bias of θ̂w, for w = 1, . . . , κ, can be written as

Bias
(
θ̂w
)

=

κ∑
i=1

κ∑
j=1

κ∑
l=1

swi(θ)sjl(θ) (hij,l(θ) + 0.5hijl(θ))

+O(n−2),
(16)

where sij is the (i, j)-th element of the variance-covariance
matrix of θ̂,

hijl(θ) = E
[
∂3 logL(θ)

∂θi∂θj∂θl

]
and

hij,l(θ) = E
[
∂2 logL(θ)

∂θi∂θj
.
∂ logL(θ)

∂θl

]
, for i, j, l = 1, . . . , κ.

Cordeiro and Klein [40] proved that, even when the data
are dependent, the bias expression (16) can be rewritten as

Bias
(
θ̂w
)

=

κ∑
i=1

swi(θ)

κ∑
j=1

κ∑
l=1

sjl(θ)
(
h

(l)
ij (θ)− 0.5hijl(θ)

)
+O(n−2),

where h(l)
ij (θ) =

∂hij(θ)

∂θl
, for i, j, l = 1, . . . , κ.

Firth [41] showed that the first-order term is removed from
the asymptotic bias of the MLEs by considering the Jeffreys
prior [42] as a penalty function in the likelihood equation
for the exponential family of distributions. The Jeffreys prior
can be obtained as the square root of the determinant of the
expected Fisher information matrix I(θ). Thus, it follows
from equation (14) that

πJ(θ) ∝ |I(θ)|1/2

=
√
|Diag(α11β

−2
11 , . . . , α1n1

β−2
1n1

, . . . , α−1
p1 . . . . , α

−1
pnp)|

=

p∏
j=1

nj∏
k=1

1

βjk
.

(17)
Note that after some algebraic manipulation, the likelihood

function (10) can be rewritten as

L(θ | t, δ, ψ) ∝
p∏
j=1

nj∏
k=1

γ(βjk | njk + 1, njk/β̂jk)×

γ(αjk | njk+1, 1).

The marginal distribution for each parameter is indepen-
dent of the other parameters. Moreover, since the marginals
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TABLE 1: Bias, MSE and CP95% from the MLEs, considering different parameter values (Scenarios 1, 2 and 3) and M = 50, 000
simulated samples.

Scenario 1 Scenario 2 Scenario 3

Parameter Bias MSE CP95% Parameter Bias MSE CP95% Parameter Bias MSE CP95%

β11 = 0.80 0.408 2.430 0.955 β11 = 1.20 0.099 0.406 0.955 β11 = 1.20 0.144 0.579 0.955
β12 = 0.50 0.327 1.349 0.953 β12 = 0.90 0.112 0.409 0.955 β12 = 1.10 0.098 0.394 0.955
β13 = 1.00 0.214 0.841 0.956 β13 = 1.00 0.102 0.407 0.954 β13 = 1.20 0.115 0.459 0.954
β21 = 1.00 0.420 1.608 0.955 β21 = 1.00 0.436 1.874 0.955 β21 = 1.50 0.095 0.431 0.954
β22 = 1.00 0.692 3.120 0.953 β22 = 2.00 0.109 0.527 0.952 β22 = 1.80 0.091 0.452 0.950
β23 = 1.10 0.625 2.596 0.952 β23 = 1.20 0.138 0.531 0.953 β23 = 1.60 0.165 0.650 0.954

α11 = 3.30 0.485 1.642 0.998 α11 = 14.56 -0.015 3.815 0.945 α11 = 10.92 -0.007 3.302 0.908
α12 = 2.23 0.813 1.425 0.997 α12 = 10.37 0.022 3.220 0.936 α12 = 13.49 -0.004 3.663 0.948
α13 = 7.00 0.053 2.611 0.919 α13 = 12.00 0.008 3.450 0.944 α13 = 12.74 -0.003 3.557 0.927
α21 = 4.00 0.325 1.829 0.997 α21 = 4.00 0.325 1.822 0.997 α21 = 17.89 -0.033 4.217 0.932
α22 = 2.00 0.900 1.404 0.998 α22 = 20.00 0.005 4.494 0.946 α22 = 21.97 0.024 4.692 0.942
α23 = 2.00 0.659 1.509 0.997 α23 = 10.92 -0.012 3.284 0.910 α23 = 12.07 -0.022 3.467 0.948

TABLE 2: Bias, MSE and CP95% from the MLEs, considering different parameter values (Scenarios 4, 5 and 6) and M = 50, 000
simulated samples.

Scenario 4 Scenario 5 Scenario 6

Parameter Bias MSE CP95% Parameter Bias MSE CP95% Parameter Bias MSE CP95%

β11 = 2.00 0.349 1.316 0.955 β11 = 0.80 0.308 1.193 0.956 β11 = 2.00 0.346 1.263 0.954
β12 = 0.40 0.135 0.550 0.955 β12 = 0.80 0.137 0.537 0.955 β12 = 1.10 0.029 0.188 0.952
β21 = 0.60 0.061 0.239 0.955 β21 = 0.60 0.095 1.111 0.956 β21 = 1.20 0.017 0.146 0.951
β22 = 0.70 0.071 0.279 0.956 β22 = 0.30 0.105 0.377 0.954 β22 = 1.10 0.028 0.186 0.951
β23 = 1.50 0.225 0.863 0.956 β23 = 1.10 0.190 0.868 0.956 β23 = 1.50 0.228 0.879 0.956
β31 = 0.40 0.053 0.205 0.955 β31 = 0.50 0.079 0.432 0.957 β31 = 1.10 0.013 0.126 0.952
β32 = 0.80 0.153 0.705 0.956 β32 = 1.30 0.262 0.942 0.957 β32 = 1.20 0.052 0.270 0.951

α11 = 8.00 0.019 2.799 0.894 α11 = 4.39 0.265 1.953 0.993 α11 = 8.00 0.011 2.808 0.893
α12 = 4.97 0.172 2.109 0.904 α12 = 8.24 0.016 2.854 0.909 α12 = 40.48 0.008 6.325 0.953
α21 = 12.07 -0.020 3.480 0.948 α21 = 9.05 -0.004 3.005 0.941 α21 = 72.82 0.058 8.484 0.951
α22 = 12.21 -0.019 3.488 0.910 α22 = 4.67 0.217 2.019 0.996 α22 = 40.48 0.017 6.396 0.950
α23 = 8.94 0.033 2.958 0.942 α23 = 8.10 0.024 2.828 0.900 α23 = 8.94 -0.006 2.980 0.938
α31 = 9.94 -0.014 3.146 0.923 α31 = 8.94 -0.015 2.981 0.939 α31 = 80.96 -0.009 8.978 0.944
α32 = 7.69 0.019 2.747 0.945 α32 = 7.37 0.042 2.683 0.931 α32 = 25.49 -0.005 5.028 0.938

TABLE 3: Bias, MSE and CP95% from the CMLEs, considering different parameter values (Scenarios 1, 2 and 3) andM = 50, 000
simulated samples.

Scenario 1 Scenario 2 Scenario 3

Parameter Bias MSE CP95% Parameter Bias MSE CP95% Parameter Bias MSE CP95%

β11 = 0.80 0.004 1.262 0.950 β11 = 1.20 0.001 0.358 0.951 β11 = 1.20 0.003 0.459 0.949
β12 = 0.50 0.003 0.691 0.949 β12 = 0.90 0.001 0.337 0.951 β12 = 1.10 0.001 0.344 0.952
β13 = 1.00 -0.001 0.564 0.950 β13 = 1.00 -0.001 0.347 0.950 β13 = 1.20 0.001 0.396 0.950
β21 = 1.00 -0.001 0.896 0.950 β21 = 1.00 0.006 1.012 0.950 β21 = 1.50 -0.001 0.392 0.951
β22 = 1.00 0.005 1.568 0.951 β22 = 2.00 -0.003 0.486 0.951 β22 = 1.80 0.000 0.419 0.947
β23 = 1.10 -0.007 1.347 0.951 β23 = 1.20 -0.001 0.441 0.949 β23 = 1.60 0.001 0.550 0.949

α11 = 3.30 0.485 1.642 0.940 α11 = 14.56 -0.015 3.815 0.935 α11 = 10.92 -0.007 3.302 0.954
α12 = 2.23 0.813 1.425 0.960 α12 = 10.37 0.022 3.220 0.911 α12 = 13.49 -0.004 3.663 0.924
α13 = 7.00 0.053 2.611 0.973 α13 = 12.00 0.008 3.450 0.942 α13 = 12.74 -0.003 3.557 0.952
α21 = 4.00 0.325 1.829 0.944 α21 = 4.00 0.325 1.822 0.945 α21 = 17.89 -0.033 4.217 0.958
α22 = 2.00 0.900 1.404 0.914 α22 = 20.00 0.005 4.494 0.944 α22 = 21.97 0.024 4.692 0.958
α23 = 2.00 0.659 1.509 0.914 α23 = 10.92 -0.012 3.284 0.944 α23 = 12.07 -0.022 3.467 0.958
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follow a gamma distribution, they belong to the exponential
family of distributions. Hence, the approach proposed by
Firth [41] is valid for our hierarchical competing risks model.
The penalized log-likelihood function using the Jeffreys prior
(17) as a penalized criterion can be written as

LP(θ | t, δ, ψ) ∝
p∏
j=1

nj∏
k=1

γ(βjk | njk, njk/β̂jk)×

γ(αjk | njk + 1, 1),

Then, with some algebraic manipulation, we obtain the
corrected MLEs (CMLEs) given by

β̃jk =
njk − 1

njk
β̂jk (18)

and
α̃jk = α̂jk, (19)

which are unbiased to O(n−1
jk ). Although the penalized like-

lihood method introduced by Firth [41] only ensures that the
first-order term is removed from the asymptotic bias, we have
that

E
[
β̃jk | t, δ, ψ

]
= βjk

and
E [α̃jk | t, δ, ψ] = αjk.

Therefore, the obtained CMLEs are unbiased for njk > 1.
As we observed from the simulation results presented in

Section IV-A, the asymptotic confidence intervals are not
satisfactory for small samples. Using the improved estimates
in the estimators of the asymptotic variance, which are used
to obtain the confidence intervals, will return the worst results
in terms of coverage probabilities than obtained with the
MLEs. On the other hand, by observing that

LP(αjk | t, δ, ψ) =
α
njk

jk e
−αjk

njk!
,

i.e., αjk ∼ Erlang(njk + 1, 1), then 2αjk ∼ χ2
2(njk+1).

Therefore, the 100(1 − ξ)% confidence interval for αjk can
be calculated as[

1

2
χ2

2njk+2; ξ/2 ;
1

2
χ2

2njk+2; 1−ξ/2

]
, (20)

where χ2
a; υ represents the 100υ-th percentile of the chi-

square distribution with a degrees of freedom.
Furthermore, since LP(βjk | t, δ, ψ) = γ(βjk |

njk, njk/β̂jk), we have that the 100(1 − ξ)% confidence
interval for βjk can be obtained directly from the quantile
function of the gamma distribution, that is,

[
γQ

(
njk, njk/β̂jk; ξ/2

)
; γQ

(
njk, njk/β̂jk; 1− ξ/2

)]
,

(21)
where γQ (a, b; υ) is the quantile function of the gamma

distribution with shape parameter a and scale parameter b,
and 0 ≤ υ ≤ 1. This quantile function is available in most of
the standard statistical softwares. For instance, in R it can

be computed by using the qgamma(.) function. Thus, the
exact confidence intervals for the model parameters can be
obtained without the use of intensive computation.

A. SIMULATION STUDY
In this section, we perform a second simulation study with
the same general specifications (i.e., same scenarios, number
of Monte Carlo replications and evaluation criteria) of the
first one shown in Section IV-A. However, the main goal
now is to assess the performance (i.e., the consistency and
efficiency) of the CMLEs for the model parameters presented
in equations (18) and (19), as well as of the exact confidence
intervals given in equations (20) and (21). It is worthwhile
mentioning that the generated samples are the same as those
of Section IV-A, in order to achieve a fair comparison of the
different approaches.

Tables 1, 2, 3 and 4 summarize the results. The CMLEs
of the βjks are more adequate, since their bias were suc-
cessfully removed compared with their corresponding MLEs.
Moreover, the CP95% for the αjks using the exact confidence
intervals, rather than the asymptotic confidence intervals, are
in general higher and closer to the nominal value (0.95).

VI. APPLICATIONS
In this section, we illustrate the usefulness of the new
methodology considering three data sets: an artificial data set
for a butterfly valve system (Section VI-A), a data set from
a real early-stage project of an in-pipe robot traction system
(Section VI-B), and a real data set consisting of failures of a
blowout preventer system (Section VI-C).

A. BUTTERFLY VALVE SYSTEM: A TOY EXAMPLE
To illustrate the inference process in hierarchical competing
risks model, we start with a toy example based on a butterfly
valve system. Butterfly valves are exact, low cost and a
lightweight valve with excellent capability and durability,
consisting of fewer parts, which makes butterfly valves easy
to maintain, repair and less structural support for productive
use [35]. They contain a disc, which is positioned in the
center that can be rotated a quarter of a turn through a shaft
running. For this reason, this kind of valve is known as
quarter-turn valves [43]. The rotation of the disc determines
the flow passing a pipe, whose maximum occurs when the
disc is positioned parallel to the stream and minimum when
perpendicular to it. The relative position between the geo-
metric center of the disc and the shaft defines if the valve is
namely symmetrical, eccentric or double eccentric [44].

Butterfly valves include a wide range of applications with
excellent isolation, throttling as well as on-off service and
flow regulation [45]. They provide reliable, long-term per-
formance that satisfies a wide range of industrial applications
such as oil and gas. For instance, the applications involve
isolation or regulating of oil and gas equipment, fill and drain
or bypass systems and other similar applications where the
principal function for the control of the flow or pressure can
be satisfied whether on or off [46].
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TABLE 4: Bias, MSE and CP95% from the CMLEs, considering different parameter values (Scenarios 4, 5 and 6) andM = 50, 000
simulated samples.

Scenario 4 Scenario 5 Scenario 6

Parameter Bias MSE CP95% Parameter Bias MSE CP95% Parameter Bias MSE CP95%

β11 = 2.00 -0.003 0.960 0.950 β11 = 0.80 0.001 0.678 0.950 β11 = 2.00 -0.008 0.939 0.950
β12 = 0.40 0.000 0.314 0.951 β12 = 0.80 0.000 0.380 0.949 β12 = 1.10 0.001 0.181 0.950
β21 = 0.60 0.000 0.205 0.951 β21 = 0.60 0.002 0.588 0.950 β21 = 1.20 0.000 0.143 0.950
β22 = 0.70 0.000 0.236 0.952 β22 = 0.30 -0.002 0.222 0.951 β22 = 1.10 -0.001 0.179 0.950
β23 = 1.50 -0.001 0.658 0.950 β23 = 1.10 -0.002 0.581 0.950 β23 = 1.50 -0.001 0.658 0.950
β31 = 0.40 0.000 0.163 0.950 β31 = 0.50 0.002 0.271 0.952 β31 = 1.10 -0.001 0.124 0.952
β32 = 0.80 0.002 0.476 0.950 β32 = 1.30 0.002 0.671 0.951 β32 = 1.20 0.000 0.254 0.949

α11 = 8.00 0.019 2.799 0.957 α11 = 4.39 0.265 1.953 0.961 α11 = 8.00 0.011 2.808 0.954
α12 = 4.97 0.172 2.109 0.968 α12 = 8.24 0.016 2.854 0.949 α12 = 40.48 0.008 6.325 0.944
α21 = 12.07 -0.020 3.480 0.940 α21 = 9.05 -0.004 3.005 0.937 α21 = 72.82 0.058 8.484 0.949
α22 = 12.21 -0.019 3.488 0.940 α22 = 4.67 0.217 2.019 0.949 α22 = 40.48 0.017 6.396 0.941
α23 = 8.94 0.033 2.958 0.942 α23 = 8.10 0.024 2.828 0.952 α23 = 8.94 -0.006 2.980 0.939
α31 = 9.94 -0.014 3.146 0.965 α31 = 8.94 -0.015 2.981 0.940 α31 = 80.96 -0.009 8.978 0.950
α32 = 7.69 0.019 2.747 0.960 α32 = 7.37 0.042 2.683 0.944 α32 = 25.49 -0.005 5.028 0.955

FIGURE 3: Schematic diagram of a butterfly valve.

As shown in Figure 3, the butterfly valve includes a disc
valve, placed inside one configured valve body that rotates
about its axis separate from the axis of rotation of the stems
that support the disc valve in position for a turn between
opening and closure. A packing part is located connecting
the valve body and the stem to prevent any leakage happening
when the flow passes into the pipe. Furthermore, a ring seal
acts as a seal between the metal disc and body to avoid any
leakage when the valve is in the fully closed position.

Because of the critical impact of the butterfly valve in the
industry, in this paper, the attention is focused on carrying an
FTA to increase the performance of this type of valve. The
main goal is to know the failures and with new maintenance
limits or avoid different risks within the valve performance.
Hence, the FTA moves towards higher reliability, higher
quality, and improved safety. As can be seen in Figure 4,

we created the FTA based on the Failure Mode and Effects
Analysis (FMEA) available in Bin and Abdullah [35], with
reviewing primary components of the butterfly valve, which
consists of a body, metal, disc, stem, seat and packing with
several failure modes and their causes. It is worthwhile
mentioning that these failures happen due to one of the series
competing failure mechanisms, whereby each of them act
related to the system independently. Based on the information
provided in the FMEA by Bin and Abdullah [35], we were
able to generate the data set, as shown in Table 5, which
is representative of a butterfly valve system. Two numbers
represent the failure modes, say 1.1, the first one stands for
the system, in our example, system 1, and the second number
stands for the sub-system, in our example, sub-system 1.
Furthermore, we can evaluate the proportion of the PLP for
each cause of failure by employing a graphical tool, which
is known as the Duane plot [19]. As can be seen in Figure
5, the values of the sub-systems are close to the line. This
means that the obtained data set comes from a PLP, and our
approach can be adequately used.

Table 6 displays the bias-corrected maximum likelihood
(CML) estimates, along with the corresponding 95% exact
confidence intervals (CI 95%) for the model parameters. The
results shown in this table suggest that the reliability of
the body and stem components improve over time since the
corresponding β̂1ks and β̂3ks are less than one. Moreover,
observe that the reliability of the disk components may
decrease over time due to corrosion on the disk surface
(β̂22 = 1.535 > 1), while the reliability of the seat and
packing components show an intermediate behavior since
their CML estimates are close to one. Note, however, that
almost all the CI 95% include the one. Therefore, we can
not say that the cause-specific intensity functions of some
components increase or decrease over time.

It is essential to point out that such results can provide
valuable insights to the maintenance crew. They also allow
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1.2 1.3 2.22.1 3.23.1 3.3 3.4 4.24.1

1 2 3 4 5

1.1 5.1

FIGURE 4: FTA of butterfly valve failure.

TABLE 5: Failure data for a butterfly valve.

Failure
Time

Failure
Mode

Failure
Time

Failure
Mode

Failure
Time

Failure
Mode

32.03 1.1 10.38 1.3 46.54 4.1
7.37 1.1 57.37 2.1 33.63 4.1
4.38 1.1 2.68 2.1 25.58 4.1

44.35 1.1 13.24 2.1 20.84 4.1
30.00 1.1 15.45 2.1 39.87 4.1

0.41 1.2 12.42 2.2 22.17 4.1
1.71 1.2 50.39 2.2 4.91 4.1

45.86 1.2 56.48 2.2 57.63 4.1
0.13 1.2 47.89 2.2 26.00 4.2

16.41 1.2 33.93 2.2 31.30 4.2
17.40 1.2 1.52 3.1 51.34 4.2
36.61 1.2 48.39 3.1 8.38 4.2

0.22 1.2 3.55 3.2 44.89 5.1
47.98 1.3 43.97 3.2 35.09 5.1

4.98 1.3 10.46 3.3 48.25 5.1
8.71 1.3 37.14 3.3 11.46 5.1

59.46 1.3 24.93 3.4 9.22 5.1
7.87 1.3 4.68 3.4 48.59 5.1

41.67 1.3 33.72 3.4 35.95 5.1

us to estimate the intensity function of each system or sub-
system and the hazard function of the overall system. The
estimated intensity functions can be obtained from (4), while
the overall hazard function can be obtained from (5), with the
parameters substituted by their estimates. Table 7 presents
the estimated intensity functions for each sub-system and
the estimated hazard function over some fixed failure times.
Observe that the results shown in this table are in agreement
with the ones presented in Table 6, that is, for the cases where
β̂jk > 1 the intensity function increases over time, while
for β̂jk < 1 the intensity function decreases over time. We
also see that the overall hazard function decreases over time,
which may be due to the repair and maintenance effects.

In order to provide a better understanding of the effect of
fatigue damage on any point of the butterfly valve compo-
nents, we then created a fatigue simulation, which is given as
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FIGURE 5: Duane plots for the failure modes of a butterfly
valve.

follows. Fatigue design of the butterfly valve is done using
design fatigue curves, which are created based on the rela-
tionship between fatigue life and stress or strain. Because in
the real structure of the valve, its components are constantly
subjected to the high cycle fatigue stress and therefore, cracks
begin from regions of concentrated stress resulting from this
cycle fatigue and corresponding fatigue safety factor [47].
It is thus essential to determine the safety factor of fatigue
failure, which indicates the ability of damage in the critical
area in the valve components. The safety factor for this valve
is determined by evaluating the effects of the loading history
due to the fluid-structure interaction on fatigue life [48].
All computations and simulations required to build Figures
6 and 7 were performed with coupling CFD (fluids) and
FEM (mechanics) models, which were prepared using the
commercial pieces of software FLUENT and ANSYS 2019
R1. Figure 6 shows the safety factor of fatigue life associated
with any point of the butterfly valve components. As can be
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TABLE 6: CML estimates and CI 95% of parameters βjk and
αjk, considering the butterfly valve failure data.

Parameter Estimate CI 95%

β11 0.631 [0.256 ; 1.616]
β12 0.297 [0.146 ; 0.612]
β13 0.682 [0.320 ; 1.484]
β21 0.498 [0.181 ; 1.456]
β22 1.535 [0.623 ; 3.931]
β31 0.257 [0.062 ; 1.432]
β32 0.319 [0.077 ; 1.775]
β33 0.449 [0.109 ; 2.502]
β34 0.499 [0.154 ; 1.804]
β41 1.046 [0.516 ; 2.156]
β42 0.831 [0.302 ; 2.428]
β51 1.133 [0.531 ; 2.466]

α11 5.000 [2.202 ; 11.668]
α12 8.000 [4.115 ; 15.763]
α13 7.000 [3.454 ; 14.423]
α21 4.000 [1.623 ; 10.242]
α22 5.000 [2.202 ; 11.668]
α31 2.000 [0.619 ; 7.225]
α32 2.000 [0.619 ; 7.225]
α33 2.000 [0.619 ; 7.225]
α34 3.000 [1.090 ; 8.767]
α41 8.000 [4.115 ; 15.763]
α42 4.000 [1.623 ; 10.242]
α51 7.000 [3.454 ; 14.423]

TABLE 7: Estimates of the subsystem-specific and overall
intensity functions at different times, considering the butterfly
valve failure data.

Intensity Time (months)

5 15 25 40 55

λ11 0.132 0.088 0.073 0.061 0.054
λ12 0.227 0.105 0.073 0.053 0.042
λ13 0.175 0.124 0.105 0.091 0.082
λ21 0.116 0.067 0.052 0.041 0.035
λ22 0.034 0.061 0.080 0.103 0.122
λ31 0.054 0.024 0.016 0.012 0.009
λ32 0.058 0.027 0.019 0.014 0.011
λ33 0.059 0.032 0.024 0.019 0.016
λ34 0.087 0.050 0.039 0.031 0.026
λ41 0.124 0.131 0.134 0.137 0.139
λ42 0.084 0.070 0.064 0.059 0.056
λ51 0.095 0.110 0.118 0.125 0.131

λ 1.245 0.888 0.797 0.744 0.723

seen, the safety factor values are presented in terms of change
between 0 and 15, in which the lower value identifies the
critical damage locations in the component. Analysis over
the safety factor of fatigue life results revealed that fatigue
could be expected to initiate near the stems, due to their role
as stress concentration points. It can be observed that the
butterfly valve has several components connected in series.
Therefore, a single component failure results in total system
failure. The available fatigue life curve, in cycles, for the
estimation of a finite lifetime of the butterfly valve under
50% to 100% of the fatigue loading history, is presented in

Figure 7. Analysis of the outcomes shows how the fatigue
results change as a function of the loading at the critical
location on the model. For instance, the results from this
figure verified that the minimum value of fatigue life ap-
peared at the maximum fatigue loading of 100%. Therefore,
damage starts from the points related to the component with
the lowest fatigue safety factor due to the significant stress
concentration. Finally, as a conclusion, a good comparison
was observed between the simulated fatigue damage results
and statistical analysis. However, the present safety factor
fatigue simulation indicates some disagreement, which is
possibly related to differences in conditions between this
simulation and statistical analysis.

FIGURE 6: Fatigue safety factors of the butterfly valve com-
ponents.

FIGURE 7: Available fatigue life of the butterfly valve compo-
nents.

B. IN-PIPE ROBOT TRACTION SYSTEM: EXAMPLE ON
EARLY-STAGE INNOVATIVE PROJECT
In this section, we consider another example based on a
real problem we are working on in a partnership with Petro-
bras (abbreviation of Petróleo Brasileiro S.A.), which is the
Brazil’s largest oil and gas producer. The problem is related
to the traction system of an in-pipe robot that was developed,
though still in its early stage of development, to be used at a
future time to remove hydrates that form in pipelines and can
cause problems in oil and gas flow. In this case, a locomotive
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is responsible for conducting the robot inside the pipe, and
once hydrate formation is identified, the robot will work on
its safe removal for the oil to flow again. A schematic of the
studied system is shown in Figure 8.

Paws

Structure

FIGURE 8: Schematic diagram of an in-pipe robot traction
system.

We obtained a suitable data set for this problem using a
similar approach as proposed in the previous section, i.e.,
based on the limited but available information provided by
FMEA and FTA tools. Due to the criticality of the traction
system, we will focus on it instead of the overall locomotive
system. An excerpt from the FMEA devised by the project
executing team is shown in Table 8. On the other hand,
the hierarchy of failure modes that compete with each other
to cause a general system failure can be seen in Figure 9.
Thus, these two tools supported the generation of the data set
shown in Table 9, whose parameter representativeness tries to
express the degree of severity and occurrence of the FMEA
used.

TABLE 8: FMEA for the in-pipe robot traction system. S =
Severity, O = Occurrence, D = Detection.

General System System Failure Mode S O D

Mechanical
components

Paws

Compromised paw lining adhesive 7 3 3

No arms retraction 9 3 9

Paw slip 9 3 9

Riser deformation 9 3 9

Riser rupture 9 1 9

Rubber coating degradation 7 3 7

Structure Cracking by atomic hydrogen permeation 9 9 9

Stress concentration 9 5 9

Duane plots applied to the data for each failure mode show
evidence that a PLP may be able to adequately describe
the behavior of system-associated failure times, since the
scattered points show an approximately linear trend (see
Figure 10).

Compromised
paw lining
adhesive

Paws 
failure

Structure
failure

No arms
retrac�on

Paw slip

Riser
deforma�on

Riser
rupture

Rubber
coa�ng

degrada�on
Mechanical 
components

failures

1.2

1.3

1.4

1.5

1.6

1.1

1
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2.1

2.2

Cracking
by atomic
hydrogen

permea�on

Stress
concentra�on

FIGURE 9: FTA of in-pipe robot traction system failure.
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FIGURE 10: Duane plots for the failure modes related to the
in-pipe robot traction system.

The CML estimates for the parameters associated with
each failure mode, as well as their respective CI 95%, are
presented in Table 10. From these results, there is evidence
that the intensity associated with some failure modes (e.g.,
Cracking by atomic hydrogen permeation) increases. On the
other hand, there seems to be a decrease in risks associated
with other failure modes (e.g., Compromised paw lining
adhesive and Riser rupture), although their CI 95% contains
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TABLE 9: Failure data for the in-pipe robot traction system.
FT = Failure Time, FM = Failure Mode.

FT FM FT FM FT FM FT FM FT FM FT FM

36.0 1.1 112.6 1.3 150.2 1.6 119.2 2.1 90.1 2.1 38.3 2.2
53.2 1.1 60.6 1.3 26.1 1.6 31.9 2.1 69.6 2.1 152.2 2.2
87.9 1.1 127.1 1.3 148.3 1.6 58.4 2.1 119.1 2.1 159.4 2.2

150.2 1.1 79.8 1.3 157.2 1.6 78.4 2.1 56.8 2.1 114.6 2.2
26.1 1.1 117.9 1.3 103.8 1.6 5.3 2.1 93.1 2.1 109.5 2.2

148.3 1.1 166.6 1.3 98.0 1.6 77.8 2.1 135.8 2.1 12.8 2.2
157.2 1.1 59.9 1.3 6.6 1.6 150.2 2.1 23.2 2.1 39.0 2.2
103.8 1.1 128.5 1.3 26.8 1.6 70.9 2.1 151.0 2.1 33.9 2.2

98.0 1.1 40.9 1.4 22.4 1.6 93.7 2.1 70.7 2.1 118.8 2.2
6.6 1.1 58.6 1.4 108.6 1.6 111.6 2.1 146.0 2.1 69.4 2.2

26.8 1.1 92.8 1.4 55.2 1.6 95.5 2.1 72.0 2.1 131.9 2.2
40.9 1.2 151.6 1.4 124.0 1.6 43.8 2.1 69.8 2.1 88.2 2.2
58.6 1.2 30.5 1.4 74.7 1.6 144.4 2.1 92.8 2.1 123.7 2.2
92.8 1.2 149.9 1.4 114.2 1.6 121.7 2.1 153.3 2.1 166.7 2.2

151.6 1.2 158.1 1.4 166.4 1.6 139.7 2.1 149.5 2.1 68.8 2.2
30.5 1.2 108.0 1.4 54.6 1.6 28.3 2.1 79.1 2.1 133.2 2.2

149.9 1.2 102.5 1.4 125.4 1.6 129.7 2.1 137.3 2.1 157.8 2.2
158.1 1.2 8.6 1.4 155.3 1.6 82.5 2.1 162.7 2.1 40.1 2.2
108.0 1.2 31.2 1.4 58.1 2.1 143.5 2.1 86.2 2.1 113.1 2.2
102.5 1.2 26.4 1.4 76.1 2.1 118.6 2.1 128.1 2.1 24.7 2.2

8.6 1.2 112.6 1.4 107.6 2.1 138.1 2.1 80.7 2.1 49.7 2.2
31.2 1.2 60.6 1.4 155.5 2.1 104.6 2.1 68.4 2.1 69.8 2.2
26.4 1.2 127.1 1.4 46.6 2.1 101.0 2.1 134.5 2.1 3.1 2.2

112.6 1.2 79.8 1.4 154.2 2.1 139.0 2.1 46.8 2.1 69.1 2.2
60.6 1.2 117.9 1.4 160.5 2.1 8.3 2.1 127.9 2.1 147.7 2.2

127.1 1.2 166.6 1.4 120.6 2.1 92.9 2.1 31.1 2.1 62.1 2.2
79.8 1.2 59.9 1.4 115.9 2.1 130.9 2.1 54.6 2.1 85.6 2.2

117.9 1.2 128.5 1.4 18.1 2.1 125.2 2.1 35.5 2.1 104.7 2.2
40.9 1.3 19.1 1.5 47.4 2.1 93.0 2.1 53.5 2.1 87.5 2.2
58.6 1.3 33.2 1.5 41.9 2.1 149.1 2.1 17.4 2.1 35.6 2.2
92.8 1.3 67.4 1.5 124.4 2.1 86.8 2.1 117.9 2.1 141.0 2.2

151.6 1.3 143.5 1.5 78.1 2.1 54.5 2.1 151.1 2.1 115.8 2.2
30.5 1.3 12.2 1.5 136.3 2.1 20.1 2.1 137.5 2.1 135.8 2.2

149.9 1.3 140.9 1.5 96.1 2.1 26.5 2.1 140.1 2.1 21.5 2.2
158.1 1.3 153.0 1.5 128.8 2.1 66.9 2.1 89.5 2.1 124.6 2.2
108.0 1.3 85.2 1.5 166.9 2.1 99.3 2.1 82.3 2.1 74.0 2.2
102.5 1.3 78.6 1.5 77.4 2.1 120.8 2.1 49.4 2.2 140.0 2.2

8.6 1.3 36.0 1.6 137.3 2.1 81.8 2.1 67.4 2.2 112.4 2.2
31.2 1.3 53.2 1.6 159.2 2.1 156.2 2.1 100.4 2.2 134.0 2.2
26.4 1.3 87.9 1.6 48.6 2.1 63.0 2.1 153.7 2.2 97.2 2.2

the one.

TABLE 10: CML estimates and CI 95% of model parameters,
considering the in-pipe robot traction system failure data.

Failure Mode Parameter Estimate CI 95%

Compromised paw lining adhesive β11 0.862 [ 0.474 ; 1.586]
α11 11.000 [ 6.201 ; 19.682]

No arms retraction
β12 1.047 [ 0.648 ; 1.700]
α12 17.000 [10.668 ; 27.219]

Paw slip β13 1.145 [ 0.736 ; 1.789]
α13 20.000 [12.999 ; 30.888]

Riser deformation
β14 1.145 [ 0.736 ; 1.789]
α14 20.000 [12.999 ; 30.888]

Riser rupture β15 0.870 [ 0.448 ; 1.714]
α15 9.000 [ 4.795 ; 17.085]

Rubber coating degradation β16 1.101 [ 0.716 ; 1.700]
α16 21.000 [13.787 ; 32.101]

Cracking by atomic hydrogen permeation β21 1.390 [ 1.140 ; 1.696]
α21 98.000 [80.462 ; 119.431]

Stress concentration
β22 1.232 [ 0.916 ; 1.659]
α22 44.000 [32.823 ; 59.068]

The behavior over time of the estimated intensities and
reliabilities, for each specific failure mode, is shown in Fig-
ures 11a and 11b, from which we can see that the intensities
associated with the failure modes 2.1 and 2.2 (Structure
system) grow significantly more than others. In addition, the
median lifespan of these sub-systems is around five weeks,
while the rest is around seven weeks.

The combination of individual intensities and reliabilities,
within their respective hierarchies, results in specific func-
tions corresponding to each system. In this context, it is
possible to study such measures by considering a level above

in the hierarchy. The results are shown in Figure 11c, where
it can be seen that the intensity of the Paws system grows
significantly much less than the Structure system; however,
in the (approximately) twenty initial weeks, its intensity is
lower than the Paws system. This can also be observed from
the reliability curve, where the median lifetime of the Paws
system is around one week, while that of the Structure system
is close to three. In addition, the curves become very close
from week fifteen.

Finally, the combination of the intensities and reliabilities
of all failure modes results in their respective functions for
the general system, as a whole. Thus, there is a growing
intensity associated with it, and a median time of operation
close to one week.

C. BLOWOUT PREVENTER SYSTEM: A REAL EXAMPLE
A blowout preventer (BOP) is a large, specially designed
valve that is used to seal, control and monitor oil and gas
wells [49]. This valve mounts on top of the well during the
drilling and completion stages of operation and serves as an
essential barrier against blowouts, that is, the uncontrolled
release of crude oil and/or natural gas from a well.

FTA for the BOP system is shown in Figure 12, which
was done based on the real data set downloaded from the
RAPID-S53 website (https://www.rapid4s53.com). This data
set is available in Table 11. Analogously to Section VI-A,
the failure modes are represented by two numbers, in the
order that they appear from left to right in the graphical
representation (again, the first number refers to the system,
and the second one stands for the sub-system). It is worth
mentioning that these failures occur due to a competing risks
mechanism (in which we assume that each of them acts
independently), and the safety equipment in question (BOP)
is considered to be a repairable system.

First, we can evaluate the proportion of the PLP for each
failure cause by using the Duane plot. As it can be observed
from Figure 13, the values of the sub-systems are, in general,
close to the line, which means that this data set comes from a
PLP and our methods can be suitably used.

Table 12 shows the CML estimates and CI 95% for the
model parameters. The results presented in this table suggest
that the reliability of all components improves over time since
the β̂jks are less than one. Therefore, we can say that the
cause-specific intensity functions of all components decrease
over time.

Table 13 displays the estimated intensity functions for each
sub-system and the estimated hazard function over some
fixed failure times. Observe that the results shown in this
table are in agreement with the ones presented in Table 12,
that is, the intensity functions decrease over time. We also see
that the overall hazard function decreases over time, which
may be due to the repair and maintenance effects.

The results presented in Table 12 would also allow us
to estimate the reliability function of each system or sub-
system, and the reliability function of the overall system.
The estimated reliability functions can be obtained from (8),
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FIGURE 11: General graphical results.

1 2 3 4

1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1

FIGURE 12: FTA of BOP failure.

while the overall reliability function can be obtained from (7),
with the parameters substituted by their estimates. Table 14
shows the estimated reliability functions for each sub-system
and the estimated overall reliability function over some fixed
failure times (which are the same times considered in Ta-
ble 13). Observe that the overall reliability function, as well

as the sub-systems’ reliability functions, decrease over time,
although at different rates.
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TABLE 11: Failure data for a BOP system.

Failure
Time

Failure
Mode

Failure
Time

Failure
Mode

52 1.1 8,500 2.4
92 1.1 6 3.1

5,000 1.1 504 3.1
4,320 1.2 720 3.1
6,566 1.2 1,800 3.1

12 2.1 48 3.2
100 2.1 1,450 3.2

50 2.2 2,160 3.2
4,320 2.2 14,780 3.2

720 2.3 200,000 3.2
768 2.3 240 3.3

3,000 2.3 5,640 3.3
8,200 2.3 5,300 4.1
7,776 2.4 6,192 4.1
8,200 2.4
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FIGURE 13: Duane plots for the failure modes of a BOP
system.

VII. CONCLUDING REMARKS AND FURTHER
RESEARCH
In this paper, we introduced a new statistical model for
repairable systems subject to hierarchical competing risks
under the assumption that the failure modes act indepen-
dently. The competing risks approach may be useful in the
engineering area, since it may lead to a better comprehension
of the several failure modes of a system. Therefore, design
strategies improve overall system reliability. The hierarchical
structure may also be advantageous because sometimes it
may record information about which sub-system of a specific
system has resulted in the total system failure.

We assumed that the repairs are minimal, and the fail-
ure intensity follows a PLP model after a convenient
reparametrization. Under a classical framework, we proposed
estimators and confidence intervals for the model parame-
ters, whose performances were investigated using a simula-
tion study. In short, the simulation results revealed that the
bias-corrected MLEs (or CMLEs) provide better estimates,

TABLE 12: CML estimates and CI 95% of parameters βjk and
αjk, considering the BOP failure data.

Parameter Estimate CI 95%

β11 0.102 [0.032 ; 0.368]
β12 0.138 [0.033 ; 0.768]
β21 0.058 [0.014 ; 0.322]
β22 0.082 [0.020 ; 0.459]
β23 0.161 [0.059 ; 0.472]
β24 0.208 [0.064 ; 0.753]
β31 0.112 [0.041 ; 0.328]
β32 0.196 [0.080 ; 0.502]
β33 0.097 [0.024 ; 0.541]
β41 0.141 [0.034 ; 0.784]

α11 3.000 [1.090 ; 8.767]
α12 2.000 [0.619 ; 7.225]
α21 2.000 [0.619 ; 7.225]
α22 2.000 [0.619 ; 7.225]
α23 4.000 [1.623 ; 10.242]
α24 3.000 [1.090 ; 8.767]
α31 4.000 [1.623 ; 10.242]
α32 5.000 [2.202 ; 11.668]
α33 2.000 [0.619 ; 7.225]
α41 2.000 [0.619 ; 7.225]

TABLE 13: Estimates of the subsystem-specific and overall
intensity functions at different times, considering the BOP
failure data.

Intensity Time (hours)

4 24 72 1000 9000

λ11 0.0254 0.0051 0.0019 0.0002 0.0000
λ12 0.0155 0.0033 0.0013 0.0001 0.0000
λ21 0.0155 0.0029 0.0010 0.0001 0.0000
λ22 0.0169 0.0033 0.0012 0.0001 0.0000
λ23 0.0281 0.0063 0.0025 0.0003 0.0000
λ24 0.0164 0.0040 0.0017 0.0002 0.0000
λ31 0.0333 0.0068 0.0026 0.0002 0.0000
λ32 0.0294 0.0070 0.0029 0.0003 0.0001
λ33 0.0170 0.0034 0.0012 0.0001 0.0000
λ41 0.0153 0.0033 0.0013 0.0001 0.0000

λ 0.2128 0.0451 0.0175 0.0018 0.0003

TABLE 14: Estimates of the subsystem-specific and overall
reliability functions at different times, considering the BOP
failure data.

Reliability Time (hours)

4 24 72 1000 9000

R11 0.3693 0.3025 0.2626 0.1740 0.1122
R12 0.6378 0.5622 0.5117 0.3817 0.2714
R21 0.3427 0.3049 0.2821 0.2292 0.1878
R22 0.4406 0.3867 0.3534 0.2747 0.2125
R23 0.4979 0.3940 0.3289 0.1826 0.0885
R24 0.7299 0.6330 0.5627 0.3698 0.2076
R31 0.3049 0.2340 0.1934 0.1100 0.0593
R32 0.5494 0.4269 0.3479 0.1705 0.0658
R33 0.4970 0.4352 0.3962 0.3026 0.2277
R41 0.6465 0.5704 0.5193 0.3872 0.2745

R 0.0007 0.0001 0.0000 0.0000 0.0000
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mainly for the βjk parameters, than the MLEs. Besides,
the exact confidence intervals for the αjk parameters give
coverage probabilities closer to the nominal value (0.95) than
the asymptotic confidence intervals. Finally, the proposed
methodology is illustrated through a toy example on a but-
terfly valve system, an example of a real early-stage project
related to an in-pipe robot traction system, and also a real
example on a BOP system.

As future works, we intend to derive Bayesian estimators
for the model parameters, generalize our results to more than
two hierarchical levels, model the dependence among the
failure modes (and sub-causes) via shared frailty models, and
assume that repairs are either perfect (renewal process model)
or imperfect.
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